scholarly journals Howe–Moore type theorems for quantum groups and rigid -tensor categories

2017 ◽  
Vol 154 (2) ◽  
pp. 328-341
Author(s):  
Yuki Arano ◽  
Tim de Laat ◽  
Jonas Wahl

We formulate and study Howe–Moore type properties in the setting of quantum groups and in the setting of rigid $C^{\ast }$-tensor categories. We say that a rigid $C^{\ast }$-tensor category ${\mathcal{C}}$ has the Howe–Moore property if every completely positive multiplier on ${\mathcal{C}}$ has a limit at infinity. We prove that the representation categories of $q$-deformations of connected compact simple Lie groups with trivial center satisfy the Howe–Moore property. As an immediate consequence, we deduce the Howe–Moore property for Temperley–Lieb–Jones standard invariants with principal graph $A_{\infty }$. These results form a special case of a more general result on the convergence of completely bounded multipliers on the aforementioned categories. This more general result also holds for the representation categories of the free orthogonal quantum groups and for the Kazhdan–Wenzl categories. Additionally, in the specific case of the quantum groups $\text{SU}_{q}(N)$, we are able, using a result of the first-named author, to give an explicit characterization of the central states on the quantum coordinate algebra of $\text{SU}_{q}(N)$, which coincide with the completely positive multipliers on the representation category of $\text{SU}_{q}(N)$.

2017 ◽  
Vol 28 (11) ◽  
pp. 1750087
Author(s):  
Iván Angiono ◽  
César Galindo

We give a characterization of finite pointed tensor categories obtained as de-equivariantizations of the category of corepresentations of finite-dimensional pointed Hopf algebras with abelian group of group-like elements only in terms of the (cohomology class of the) associator of the pointed part. As an application we prove that every coradically graded pointed finite braided tensor category is a de-equivariantization of the category of corepresentations of a finite-dimensional pointed Hopf algebras with abelian group of group-like elements.


2011 ◽  
Vol 22 (09) ◽  
pp. 1231-1260 ◽  
Author(s):  
SERGEY NESHVEYEV ◽  
LARS TUSET

We show that for any compact connected group G the second cohomology group defined by unitary invariant two-cocycles on Ĝ is canonically isomorphic to [Formula: see text]. This implies that the group of autoequivalences of the C*-tensor category Rep G is isomorphic to [Formula: see text]. We also show that a compact connected group G is completely determined by Rep G. More generally, extending a result of Etingof–Gelaki and Izumi–Kosaki we describe all pairs of compact separable monoidally equivalent groups. The proofs rely on the theory of ergodic actions of compact groups developed by Landstad and Wassermann and on its algebraic counterpart developed by Etingof and Gelaki for the classification of triangular semisimple Hopf algebras. We give a self-contained account of amenability of tensor categories, fusion rings and discrete quantum groups, and prove an analog of Radford's theorem on minimal Hopf subalgebras of quasitriangular Hopf algebras for compact quantum groups.


Author(s):  
Yves Achdou ◽  
Jiequn Han ◽  
Jean-Michel Lasry ◽  
Pierre-Louis Lions ◽  
Benjamin Moll

Abstract We recast the Aiyagari-Bewley-Huggett model of income and wealth distribution in continuous time. This workhorse model – as well as heterogeneous agent models more generally – then boils down to a system of partial differential equations, a fact we take advantage of to make two types of contributions. First, a number of new theoretical results: (i) an analytic characterization of the consumption and saving behavior of the poor, particularly their marginal propensities to consume; (ii) a closed-form solution for the wealth distribution in a special case with two income types; (iii) a proof that there is a unique stationary equilibrium if the intertemporal elasticity of substitution is weakly greater than one. Second, we develop a simple, efficient and portable algorithm for numerically solving for equilibria in a wide class of heterogeneous agent models, including – but not limited to – the Aiyagari-Bewley-Huggett model.


2020 ◽  
Vol 70 (6) ◽  
pp. 1275-1288
Author(s):  
Abd El-Mohsen Badawy ◽  
Miroslav Haviar ◽  
Miroslav Ploščica

AbstractThe notion of a congruence pair for principal MS-algebras, simpler than the one given by Beazer for K2-algebras [6], is introduced. It is proved that the congruences of the principal MS-algebras L correspond to the MS-congruence pairs on simpler substructures L°° and D(L) of L that were associated to L in [4].An analogy of a well-known Grätzer’s problem [11: Problem 57] formulated for distributive p-algebras, which asks for a characterization of the congruence lattices in terms of the congruence pairs, is presented here for the principal MS-algebras (Problem 1). Unlike a recent solution to such a problem for the principal p-algebras in [2], it is demonstrated here on the class of principal MS-algebras, that a possible solution to the problem, though not very descriptive, can be simple and elegant.As a step to a more descriptive solution of Problem 1, a special case is then considered when a principal MS-algebra L is a perfect extension of its greatest Stone subalgebra LS. It is shown that this is exactly when de Morgan subalgebra L°° of L is a perfect extension of the Boolean algebra B(L). Two examples illustrating when this special case happens and when it does not are presented.


2016 ◽  
Vol 15 (08) ◽  
pp. 1650149 ◽  
Author(s):  
Said El Baghdadi ◽  
Marco Fontana ◽  
Muhammad Zafrullah

Let [Formula: see text] be an integral domain with quotient field [Formula: see text]. Call an overring [Formula: see text] of [Formula: see text] a subring of [Formula: see text] containing [Formula: see text] as a subring. A family [Formula: see text] of overrings of [Formula: see text] is called a defining family of [Formula: see text], if [Formula: see text]. Call an overring [Formula: see text] a sublocalization of [Formula: see text], if [Formula: see text] has a defining family consisting of rings of fractions of [Formula: see text]. Sublocalizations and their intersections exhibit interesting examples of semistar or star operations [D. D. Anderson, Star operations induced by overrings, Comm. Algebra 16 (1988) 2535–2553]. We show as a consequence of our work that domains that are locally finite intersections of Prüfer [Formula: see text]-multiplication (respectively, Mori) sublocalizations turn out to be Prüfer [Formula: see text]-multiplication domains (PvMDs) (respectively, Mori); in particular, for the Mori domain case, we reobtain a special case of Théorème 1 of [J. Querré, Intersections d’anneaux intègers, J. Algebra 43 (1976) 55–60] and Proposition 3.2 of [N. Dessagnes, Intersections d’anneaux de Mori — exemples, Port. Math. 44 (1987) 379–392]. We also show that, more than the finite character of the defining family, it is the finite character of the star operation induced by the defining family that causes the interesting results. As a particular case of this theory, we provide a purely algebraic approach for characterizing P vMDs as a subclass of the class of essential domains (see also Theorem 2.4 of [C. A. Finocchiaro and F. Tartarone, On a topological characterization of Prüfer [Formula: see text]-multiplication domains among essential domains, preprint (2014), arXiv:1410.4037]).


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Qinglan Bao ◽  
Xiaoling Hao ◽  
Jiong Sun

This paper is concerned with the characterization of all self-adjoint domains associated with two-interval even order singular C-symmetric differential operators in terms of boundary conditions. The previously known characterizations of Lagrange symmetric differential operators are a special case of this one.


2014 ◽  
Vol 57 (2) ◽  
pp. 424-430 ◽  
Author(s):  
Piotr M. Sołtan ◽  
Ami Viselter

AbstractIn this short note we introduce a notion called quantum injectivity of locally compact quantum groups, and prove that it is equivalent to amenability of the dual. In particular, this provides a new characterization of amenability of locally compact groups.


2019 ◽  
Vol 29 (1) ◽  
pp. 153-162
Author(s):  
Shachar Sapir ◽  
Asaf Shapira

AbstractThe induced removal lemma of Alon, Fischer, Krivelevich and Szegedy states that if an n-vertex graph G is ε-far from being induced H-free then G contains δH(ε) · nh induced copies of H. Improving upon the original proof, Conlon and Fox proved that 1/δH(ε)is at most a tower of height poly(1/ε), and asked if this bound can be further improved to a tower of height log(1/ε). In this paper we obtain such a bound for graphs G of density O(ε). We actually prove a more general result, which, as a special case, also gives a new proof of Fox’s bound for the (non-induced) removal lemma.


2008 ◽  
Vol 24 (5) ◽  
pp. 1443-1455 ◽  
Author(s):  
James Davidson ◽  
Jan R. Magnus ◽  
Jan Wiegerinck

We consider the Breitung (2002, Journal of Econometrics 108, 343–363) statistic ξn, which provides a nonparametric test of the I(1) hypothesis. If ξ denotes the limit in distribution of ξn as n → ∞, we prove (Theorem 1) that 0 ≤ ξ ≤ 1/π2, a result that holds under any assumption on the underlying random variables. The result is a special case of a more general result (Theorem 3), which we prove using the so-called cotangent method associated with Cauchy's residue theorem.


2005 ◽  
Vol 4 (1) ◽  
pp. 135-173 ◽  
Author(s):  
Saad Baaj ◽  
Stefaan Vaes

For a matched pair of locally compact quantum groups, we construct the double crossed product as a locally compact quantum group. This construction generalizes Drinfeld’s quantum double construction. We study the modular theory and the $\mathrm{C}^*$-algebraic properties of these double crossed products, as well as several links between double crossed products and bicrossed products. In an appendix, we study the Radon–Nikodym derivative of a weight under a quantum group action (following Yamanouchi) and obtain, as a corollary, a new characterization of closed quantum subgroups. AMS 2000 Mathematics subject classification: Primary 46L89. Secondary 46L65


Sign in / Sign up

Export Citation Format

Share Document