ON DIFFERENCE FIELDS WITH QUANTIFIER ELIMINATION

2001 ◽  
Vol 33 (6) ◽  
pp. 641-646 ◽  
Author(s):  
RAHIM MOOSA

This paper proves that a difference field (E, σ) admits quantifier elimination if and only if E is an algebraically closed field, and σ is an integer power of the Frobenius automorphism.

2012 ◽  
Vol 77 (2) ◽  
pp. 545-579 ◽  
Author(s):  
Koushik Pal

AbstractThe theory of valued difference fields (K, σ, υ,) depends on how the valuation υ interacts with the automorphism σ. Two special cases have already been worked out - the isometric case, where υ(σ(x)) = υ(x) for all x Є K, has been worked out by Luc Belair, Angus Macintyre and Thomas Scanlon; and the contractive case, where υ(σ(x)) > nυ(x) for all x Є K× with υ(x) > 0 and n Є ℕ, has been worked out by Salih Azgin. In this paper we deal with a more general version, the multiplicative case, where υ(σ(x)) = ρ · υ(x), where ρ (> 0) is interpreted as an element of a real-closed field. We give an axiomatization and prove a relative quantifier elimination theorem for this theory.


Author(s):  
Piotr Malicki

AbstractWe study the strong simple connectedness of finite-dimensional tame algebras over an algebraically closed field, for which the Auslander–Reiten quiver admits a separating family of almost cyclic coherent components. As the main application we describe all analytically rigid algebras in this class.


1959 ◽  
Vol 14 ◽  
pp. 223-234 ◽  
Author(s):  
Hisasi Morikawa

Let k be an algebraically closed field of characteristic p>0. Let K/k be a function field of one variable and L/K be an unramified separable abelian extension of degree pr over K. The galois automorphisms ε1, …, εpr of L/K are naturally extended to automorphisms η(ε1), … , η(εpr) of the jacobian variety JL of L/k. If we take a svstem of p-adic coordinates on JL, we get a representation {Mp(η(εv))} of the galois group G(L/K) of L/K over p-adic integers.


2013 ◽  
Vol 89 (2) ◽  
pp. 234-242 ◽  
Author(s):  
DONALD W. BARNES

AbstractFor a Lie algebra $L$ over an algebraically closed field $F$ of nonzero characteristic, every finite dimensional $L$-module can be decomposed into a direct sum of submodules such that all composition factors of a summand have the same character. Using the concept of a character cluster, this result is generalised to fields which are not algebraically closed. Also, it is shown that if the soluble Lie algebra $L$ is in the saturated formation $\mathfrak{F}$ and if $V, W$ are irreducible $L$-modules with the same cluster and the $p$-operation vanishes on the centre of the $p$-envelope used, then $V, W$ are either both $\mathfrak{F}$-central or both $\mathfrak{F}$-eccentric. Clusters are used to generalise the construction of induced modules.


2014 ◽  
Vol 35 (7) ◽  
pp. 2242-2268 ◽  
Author(s):  
MATTEO RUGGIERO

We give a classification of superattracting germs in dimension $1$ over a complete normed algebraically closed field $\mathbb{K}$ of positive characteristic up to conjugacy. In particular, we show that formal and analytic classifications coincide for these germs. We also give a higher-dimensional version of some of these results.


2011 ◽  
Vol 11 (2) ◽  
pp. 221-271 ◽  
Author(s):  
Alain Genestier ◽  
Sergey Lysenko

AbstractLet k be an algebraically closed field of characteristic two. Let R be the ring of Witt vectors of length two over k. We construct a group stack Ĝ over k, the metaplectic extension of the Greenberg realization of $\operatorname{\mathbb{S}p}_{2n}(R)$. We also construct a geometric analogue of the Weil representation of Ĝ, this is a triangulated category on which Ĝ acts by functors. This triangulated category and the action are geometric in a suitable sense.


2002 ◽  
Vol 67 (2) ◽  
pp. 635-648
Author(s):  
Xavier Vidaux

AbstractLet K and K′ be two elliptic fields with complex multiplication over an algebraically closed field k of characteristic 0. non k-isomorphic, and let C and C′ be two curves with respectively K and K′ as function fields. We prove that if the endomorphism rings of the curves are not isomorphic then K and K′ are not elementarily equivalent in the language of fields expanded with a constant symbol (the modular invariant). This theorem is an analogue of a theorem from David A. Pierce in the language of k-algebras.


2009 ◽  
Vol 52 (2) ◽  
pp. 224-236
Author(s):  
Riccardo Ghiloni

AbstractLetRbe a real closed field, letX⊂Rnbe an irreducible real algebraic set and letZbe an algebraic subset ofXof codimension ≥ 2. Dubois and Efroymson proved the existence of an irreducible algebraic subset ofXof codimension 1 containingZ. We improve this dimension theorem as follows. Indicate by μ the minimum integer such that the ideal of polynomials inR[x1, … ,xn] vanishing onZcan be generated by polynomials of degree ≤ μ. We prove the following two results: (1) There exists a polynomialP∈R[x1, … ,xn] of degree≤ μ+1 such thatX∩P–1(0) is an irreducible algebraic subset ofXof codimension 1 containingZ. (2) LetFbe a polynomial inR[x1, … ,xn] of degreedvanishing onZ. Suppose there exists a nonsingular pointxofXsuch thatF(x) = 0 and the differential atxof the restriction ofFtoXis nonzero. Then there exists a polynomialG∈R[x1, … ,xn] of degree ≤ max﹛d, μ + 1﹜ such that, for eacht∈ (–1, 1) \ ﹛0﹜, the set ﹛x∈X|F(x) +tG(x) = 0﹜ is an irreducible algebraic subset ofXof codimension 1 containingZ. Result (1) and a slightly different version of result (2) are valid over any algebraically closed field also.


Sign in / Sign up

Export Citation Format

Share Document