scholarly journals New soliton properties to the ill-posed Boussinesq equation arising in nonlinear physical science

Author(s):  
Serbay Duran ◽  
Muzaffer Askin ◽  
Tukur Abdulkadir Sulaiman

In manuscript, with the help of the Wolfram Mathematica 9, we employ the modified exponential function method in obtaining some new soliton solutions to the ill-posed Boussinesq equation arising in nonlinear media. Results obtained with use of technique, and also, surfaces for soliton solutions are given. We also plot the 3D and 2D of each solution obtained in this study by using the same program in the Wolfram Mathematica 9.

Author(s):  
Haci Mehmet Baskonus

In this manuscript, new dark and trigonometric function traveling wave soliton solutions to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation by using the modified exponential function method are successfully obtained. Along with novel dark structures, trigonometric solutions are also extracted. For deeper investigating of waves propagation on the surface, 2D and 3D graphs along with contour simulations via computational programs such as Wolfram Mathematica, Matlap softwares and so on are presented.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 176
Author(s):  
Shumaila Javeed ◽  
Khurram Saleem Alimgeer ◽  
Sidra Nawaz ◽  
Asif Waheed ◽  
Muhammad Suleman ◽  
...  

This paper is based on finding the exact solutions for Burger’s equation, Zakharov-Kuznetsov (ZK) equation and Kortewegde vries (KdV) equation by utilizing exponential function method that depends on the series of exponential functions. The exponential function method utilizes the homogeneous balancing principle to find the solutions of nonlinear equations. This method is simple, wide-reaching and helpful for finding the exact solution of nonlinear conformable PDEs.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950018 ◽  
Author(s):  
Behzad Ghanbari ◽  
Nauman Raza

In this study, we acquire some new exact traveling wave solutions to the nonlinear Schrödinger’s equation in the presence of Hamiltonian perturbations. The compendious integration tool, generalized exponential rational function method (GERFM), is utilized in the presence of quadratic-cubic nonlinear media. The obtained results depict the efficiency of the proposed scheme and are being reported for the first time.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Emrullah Yaşar ◽  
Sait San ◽  
Yeşim Sağlam Özkan

AbstractIn this work, we consider the ill-posed Boussinesq equation which arises in shallow water waves and non-linear lattices. We prove that the ill-posed Boussinesq equation is nonlinearly self-adjoint. Using this property and Lie point symmetries, we construct conservation laws for the underlying equation. In addition, the generalized solitonary, periodic and compact-like solutions are constructed by the exp-function method.


Author(s):  
Tolga Akturk

In this paper, some travelling wave solutions of the Modified Boussinesq (MBQ) equation are obtained by using the modified expansion function method (MEFM). When the obtained solutions are commented, trigonometric functions including hyperbolic features are obtained. The 2D and 3D graphics of the solutions have been investigated by selecting appropriate parameters. All the obtained solutions provide the MBQ equation. In this work, all mathematical calculations are done with Wolfram Mathematica software. 


2020 ◽  
Vol 5 (1) ◽  
pp. 309-316
Author(s):  
Gülnur Yel ◽  
Tolga Aktürk

AbstractIn this article, some new travelling wave solutions of the (3+1) dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equation are obtained using the modified exponential function method. When the solution functions obtained are examined, it is seen that functions with periodic functions are obtained. Two and three dimensional graphs of the travelling wave solutions of the BLMP equation are drawn by selecting the appropriate parameters


2012 ◽  
Vol 17 (3) ◽  
pp. 280-296 ◽  
Author(s):  
Ghodrat Ebadi ◽  
Nazila Yousefzadeh Fard ◽  
Houria Triki ◽  
Anjan Biswas

This paper studies the (2 + 1)-dimensional Camassa–Holm Kadomtsev–Petviashvili equation. There are a few methods that will be utilized to carry out the integration of this equation. Those are the G'/G method as well as the exponential function method. Subsequently, the ansatz method will be applied to obtain the topological soliton solution of this equation. The constraint conditions, for the existence of solitons, will also fall out of these.


Sign in / Sign up

Export Citation Format

Share Document