scholarly journals Dark and trigonometric soliton solutions in asymmetrical Nizhnik-Novikov-Veselov equation with (2+1)-dimensional

Author(s):  
Haci Mehmet Baskonus

In this manuscript, new dark and trigonometric function traveling wave soliton solutions to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation by using the modified exponential function method are successfully obtained. Along with novel dark structures, trigonometric solutions are also extracted. For deeper investigating of waves propagation on the surface, 2D and 3D graphs along with contour simulations via computational programs such as Wolfram Mathematica, Matlap softwares and so on are presented.

Author(s):  
Serbay Duran ◽  
Muzaffer Askin ◽  
Tukur Abdulkadir Sulaiman

In manuscript, with the help of the Wolfram Mathematica 9, we employ the modified exponential function method in obtaining some new soliton solutions to the ill-posed Boussinesq equation arising in nonlinear media. Results obtained with use of technique, and also, surfaces for soliton solutions are given. We also plot the 3D and 2D of each solution obtained in this study by using the same program in the Wolfram Mathematica 9.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 176
Author(s):  
Shumaila Javeed ◽  
Khurram Saleem Alimgeer ◽  
Sidra Nawaz ◽  
Asif Waheed ◽  
Muhammad Suleman ◽  
...  

This paper is based on finding the exact solutions for Burger’s equation, Zakharov-Kuznetsov (ZK) equation and Kortewegde vries (KdV) equation by utilizing exponential function method that depends on the series of exponential functions. The exponential function method utilizes the homogeneous balancing principle to find the solutions of nonlinear equations. This method is simple, wide-reaching and helpful for finding the exact solution of nonlinear conformable PDEs.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950106 ◽  
Author(s):  
Behzad Ghanbari

In this paper, some new traveling wave solutions to the Hirota–Maccari equation are constructed with the help of the newly introduced method called generalized exponential rational function method. Several families of exact solutions are found corresponding to the equation. To the best of our knowledge, these solutions are new, and have never been addressed in the literature. The graphical interpretation of the solutions is also depicted. Moreover, it is contemplated that the proposed technique can also be employed to another sort of complex models.


2010 ◽  
Vol 24 (10) ◽  
pp. 1011-1021 ◽  
Author(s):  
JONU LEE ◽  
RATHINASAMY SAKTHIVEL ◽  
LUWAI WAZZAN

The exact traveling wave solutions of (4 + 1)-dimensional nonlinear Fokas equation is obtained by using three distinct methods with symbolic computation. The modified tanh–coth method is implemented to obtain single soliton solutions whereas the extended Jacobi elliptic function method is applied to derive doubly periodic wave solutions for this higher-dimensional integrable equation. The Exp-function method gives generalized wave solutions with some free parameters. It is shown that soliton solutions and triangular solutions can be established as the limits of the Jacobi doubly periodic wave solutions.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950018 ◽  
Author(s):  
Behzad Ghanbari ◽  
Nauman Raza

In this study, we acquire some new exact traveling wave solutions to the nonlinear Schrödinger’s equation in the presence of Hamiltonian perturbations. The compendious integration tool, generalized exponential rational function method (GERFM), is utilized in the presence of quadratic-cubic nonlinear media. The obtained results depict the efficiency of the proposed scheme and are being reported for the first time.


Author(s):  
Khaled A. Gepreel ◽  
E. M. E. Zayed

In this paper, we use the multiple exp-function method to explicity present traveling wave solutions, double-traveling wave (DTW) solutions and triple-traveling wave solutions (TWs) which include one-soliton, double-soliton and triple-soliton solutions for nonlinear partial differential equations (NPDEs) via, the (2+1)-dimensional and (3+1)-dimensional nonlinear Burgers PDEs in mathematical physics. In this work, we build some series of straightforward and new solutions successfully with the help of a computerized symbol computational software package like Maple or Mathematica. We will make some drawings in some cases with specific values for the relevant parameters for each obtained solutions such as the one-traveling wave solutions, double-traveling wave solutions and TWs. This method is efficient and powerful in solving a wide class of NPDEs.


Author(s):  
Tolga Akturk

In this paper, some travelling wave solutions of the Modified Boussinesq (MBQ) equation are obtained by using the modified expansion function method (MEFM). When the obtained solutions are commented, trigonometric functions including hyperbolic features are obtained. The 2D and 3D graphics of the solutions have been investigated by selecting appropriate parameters. All the obtained solutions provide the MBQ equation. In this work, all mathematical calculations are done with Wolfram Mathematica software. 


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haci Mehmet Baskonus ◽  
Juan Luis García Guirao ◽  
Ajay Kumar ◽  
Fernando S. Vidal Causanilles ◽  
German Rodriguez Bermudez

This research paper focuses on the application of the tanh function method to find the soliton solutions of the (2+1)-dimensional nonlinear electrical transmission line model. Materials used to form a transmitting line are very important to transmit electric charge. In this sense, we find some new voltage behaviors such as dark, trigonometric, and complex function solutions. Choosing some suitable values of parameters, we present some various surfaces of results obtained in this paper. These results play an important role in telecommunications lines used to stand for wave propagations.


Sign in / Sign up

Export Citation Format

Share Document