Effect of short-term training on GLUT-4 mRNA and protein expression in human skeletal muscle

2004 ◽  
Vol 89 (5) ◽  
pp. 559-563 ◽  
Author(s):  
Giorgos N. Kraniou ◽  
David Cameron-Smith ◽  
Mark Hargreaves
1995 ◽  
Vol 79 (6) ◽  
pp. 1936-1938 ◽  
Author(s):  
J. A. Houmard ◽  
M. S. Hickey ◽  
G. L. Tyndall ◽  
K. E. Gavigan ◽  
G. L. Dohm

Insulin-responsive glucose transporter (GLUT-4) content increases by 1.8-fold in skeletal muscle with 14 wk of exercise training [Houmard et al. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E896-E901, 1993]. The purpose of this study was to determine whether more short-term training (7 days) increases GLUT-4 protein content in human skeletal muscle. Seven sedentary men [25.0 +/- 1.1 (SE) yr, 44.1 +/- 2.2 ml.kg-1.min-1 maximal O2 uptake, 14.9 +/- 2.1% body fat] were examined before and after 7 days of cycle ergometer training (1 h/day, 76 +/- 2% maximal heart rate). Needle biopsy samples from the vastus lateralis were used to determine GLUT-4 protein content. Muscle GLUT-4 increased (P < 0.05) by an average of 2.8 +/- 0.5-fold with 7 days of training. GLUT-4 content in skeletal muscle thus increases substantially with short-term exercise training.


2012 ◽  
Vol 47 (6) ◽  
pp. 417-424 ◽  
Author(s):  
Zoltan Bori ◽  
Zhongfu Zhao ◽  
Erika Koltai ◽  
Ioannis G. Fatouros ◽  
Athanasios Z. Jamurtas ◽  
...  

2006 ◽  
Vol 575 (3) ◽  
pp. 901-911 ◽  
Author(s):  
Martin J. Gibala ◽  
Jonathan P. Little ◽  
Martin Van Essen ◽  
Geoffrey P. Wilkin ◽  
Kirsten A. Burgomaster ◽  
...  

2018 ◽  
Vol 40 (01) ◽  
pp. 16-22 ◽  
Author(s):  
Alberto Pérez-López ◽  
Marcos Martin-Rincon ◽  
Alfredo Santana ◽  
Ismael Perez-Suarez ◽  
Cecilia Dorado ◽  
...  

AbstractInterleukin (IL)-15 stimulates mitochondrial biogenesis, fat oxidation, glucose uptake and myogenesis in skeletal muscle. However, the mechanisms by which exercise triggers IL-15 expression remain to be elucidated in humans. This study aimed at determining whether high-intensity exercise and exercise-induced RONS stimulate IL-15/IL-15Rα expression and its signaling pathway (STAT3) in human skeletal muscle. Nine volunteers performed a 30-s Wingate test in normoxia and hypoxia (PIO2=75 mmHg), 2 h after placebo or antioxidant administration (α-lipoic acid, vitamin C and E) in a randomized double-blind design. Blood samples and muscle biopsies (vastus lateralis) were obtained before, immediately after, and 30 and 120 min post-exercise. Sprint exercise upregulated skeletal muscle IL-15 protein expression (ANOVA, P=0.05), an effect accentuated by antioxidant administration in hypoxia (ANOVA, P=0.022). In antioxidant conditions, the increased IL-15 expression at 120 min post-exercise (33%; P=0.017) was associated with the oxygen deficit caused by the sprint (r=–0.54; P=0.020); while, IL-15 and Tyr705-STAT3 AUCs were also related (r=0.50; P=0.036). Antioxidant administration promotes IL-15 protein expression in human skeletal muscle after sprint exercise, particularly in severe acute hypoxia. Therefore, during intense muscle contraction, a reduced PO2 and glycolytic rate, and possibly, an attenuated RONS generation may facilitate IL-15 production, accompanied by STAT3 activation, in a process that does not require AMPK phosphorylation.


2019 ◽  
Vol 44 (12) ◽  
pp. 1391-1394
Author(s):  
Martin J. MacInnis ◽  
Lauren E. Skelly ◽  
F. Elizabeth Godkin ◽  
Brian J. Martin ◽  
Thomas R. Tripp ◽  
...  

The legs of 9 men (age 21 ± 2 years, 45 ± 4 mL/(kg·min)) were randomly assigned to complete 6 sessions of high-intensity exercise training, involving either one or four 5-min bouts of counterweighted, single-leg cycling. Needle biopsies from vastus lateralis revealed that citrate synthase maximal activity increased after training in the 4-bout group (p = 0.035) but not the 1-bout group (p = 0.10), with a significant difference between groups post-training (13%, p = 0.021). Novelty Short-term training using brief intense exercise requires multiple bouts per session to increase mitochondrial content in human skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document