creatine transporter
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 48)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Enrico Adriano ◽  
Annalisa Salis ◽  
Gianluca Damonte ◽  
Enrico Millo ◽  
Maurizio Balestrino

The creatine precursor guanidinoacetate (GAA) was used as a dietary supplement in humans with no adverse events. Nevertheless, it has been suggested that GAA is epileptogenic or toxic to the nervous system. However, increased GAA content in rodents affected by guanidinoacetate methyltransferase (GAMT) deficiency might be responsible for their spared muscle function. Given these conflicting data, and lacking experimental evidence, we investigated whether GAA affected synaptic transmission in brain hippocampal slices. Incubation with 11.5 μM GAA (the highest concentration in the cerebrospinal fluid of GAMT-deficient patients) did not change the postsynaptic compound action potential. Even 1 or 2 mM had no effect, while 4 mM caused a reversible decrease in the potential. Guanidinoacetate increased creatine and phosphocreatine, but not after blocking the creatine transporter (also used by GAA). In an attempt to allow the brain delivery of GAA when there was a creatine transporter deficiency, we synthesized diacetyl guanidinoacetic acid ethyl ester (diacetyl-GAAE), a lipophilic derivative. In brain slices, 0.1 mM did not cause electrophysiological changes and improved tissue viability after blockage of the creatine transporter. However, diacetyl-GAAE did not increase creatine nor phosphocreatine in brain slices after blockage of the creatine transporter. We conclude that: (1) upon acute administration, GAA is neither epileptogenic nor neurotoxic; (2) Diacetyl-GAAE improves tissue viability after blockage of the creatine transporter but not through an increase in creatine or phosphocreatine. Diacetyl-GAAE might give rise to a GAA–phosphoGAA system that vicariates the missing creatine–phosphocreatine system. Our in vitro data show that GAA supplementation may be safe in the short term, and that a lipophilic GAA prodrug may be useful in creatine transporter deficiency.


Author(s):  
Lara Duran‐Trio ◽  
Gabriella Fernandes‐Pires ◽  
Jocelyn Grosse ◽  
Ines Soro‐Arnaiz ◽  
Clothilde Roux‐Petronelli ◽  
...  

2021 ◽  
Vol 7 (41) ◽  
Author(s):  
Isabel Kurth ◽  
Norihiro Yamaguchi ◽  
Celia Andreu-Agullo ◽  
Helen S. Tian ◽  
Subhasree Sridhar ◽  
...  

JCI Insight ◽  
2021 ◽  
Author(s):  
Hong-Ru Chen ◽  
Xiaohui Zhang-Brotzge ◽  
Yury M. Morozov ◽  
Yuancheng Li ◽  
Siming Wang ◽  
...  

2021 ◽  
Vol 24 ◽  
pp. S204
Author(s):  
A. Evins ◽  
T. Cimms ◽  
S. Blair ◽  
J. Whyte ◽  
M. Paulich ◽  
...  

2021 ◽  
Author(s):  
Isabel Kurth ◽  
Norihiro Yamaguchi ◽  
Celia Andreu-Agullo ◽  
Helen S. Tian ◽  
Subhasree Sridhar ◽  
...  

ABSTRACTColorectal cancer (CRC) is a leading cause of cancer mortality. Creatine metabolism was previously shown to critically regulate colon cancer progression. We report that RGX-202, an oral small-molecule SLC6A8 creatine transporter inhibitor, robustly inhibits creatine import in vitro and in vivo, reduces intracellular phosphocreatine and ATP levels and induces tumor cell apoptosis in CRC. RGX-202 suppressed tumor growth across KRAS wild-type and KRAS mutant xenograft, syngeneic and patient-derived xenograft colorectal cancers. Anti-tumor efficacy correlated with tumoral expression of creatine kinase B. Combining RGX-202 with 5- fluorouracil or the DHODH inhibitor leflunomide caused regressions of multiple colorectal xenograft and PDX tumors of distinct mutational backgrounds. RGX-202 also perturbed creatine metabolism in metastatic CRC patients enrolled in a Phase-1 trial, mirroring pharmacodynamic effects on creatine metabolism observed in mice. This is, to our knowledge, the first demonstration of pre-clinical and human pharmacodynamic activity for creatine metabolism targeting in oncology, revealing a critical target for CRC.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1215
Author(s):  
Maurizio Balestrino

Creatine is a key player in heart contraction and energy metabolism. Creatine supplementation (throughout the paper, only supplementation with creatine monohydrate will be reviewed, as this is by far the most used and best-known way of supplementing creatine) increases creatine content even in the normal heart, and it is generally safe. In heart failure, creatine and phosphocreatine decrease because of decreased expression of the creatine transporter, and because phosphocreatine degrades to prevent adenosine triphosphate (ATP) exhaustion. This causes decreased contractility reserve of the myocardium and correlates with left ventricular ejection fraction, and it is a predictor of mortality. Thus, there is a strong rationale to supplement with creatine the failing heart. Pending additional trials, creatine supplementation in heart failure may be useful given data showing its effectiveness (1) against specific parameters of heart failure, and (2) against the decrease in muscle strength and endurance of heart failure patients. In heart ischemia, the majority of trials used phosphocreatine, whose mechanism of action is mostly unrelated to changes in the ergogenic creatine-phosphocreatine system. Nevertheless, preliminary data with creatine supplementation are encouraging, and warrant additional studies. Prevention of cardiac toxicity of the chemotherapy compounds anthracyclines is a novel field where creatine supplementation may also be useful. Creatine effectiveness in this case may be because anthracyclines reduce expression of the creatine transporter, and because of the pleiotropic antioxidant properties of creatine. Moreover, creatine may also reduce concomitant muscle damage by anthracyclines.


2021 ◽  
Vol 132 ◽  
pp. S79-S80
Author(s):  
Linda Rees ◽  
Ayla Evins ◽  
Tricia Cimms ◽  
Susan Blair ◽  
Kristin Voorhees ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document