scholarly journals The α2A -adrenoceptor suppresses excitatory synaptic transmission to both excitatory and inhibitory neurons in layer 4 barrel cortex

2017 ◽  
Vol 595 (22) ◽  
pp. 6923-6937 ◽  
Author(s):  
Minoru Ohshima ◽  
Chiaki Itami ◽  
Fumitaka Kimura

2009 ◽  
Vol 65 ◽  
pp. S177
Author(s):  
Minoru Ohshima ◽  
Chiaki Itami ◽  
kunihiko Obata ◽  
Yuchio yanagawa ◽  
Fumitaka Kimura




2016 ◽  
Vol 27 (9) ◽  
pp. 4411-4422 ◽  
Author(s):  
Guanxiao Qi ◽  
Karlijn van Aerde ◽  
Ted Abel ◽  
Dirk Feldmeyer


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
B Semihcan Sermet ◽  
Pavel Truschow ◽  
Michael Feyerabend ◽  
Johannes M Mayrhofer ◽  
Tess B Oram ◽  
...  

Mouse primary somatosensory barrel cortex (wS1) processes whisker sensory information, receiving input from two distinct thalamic nuclei. The first-order ventral posterior medial (VPM) somatosensory thalamic nucleus most densely innervates layer 4 (L4) barrels, whereas the higher-order posterior thalamic nucleus (medial part, POm) most densely innervates L1 and L5A. We optogenetically stimulated VPM or POm axons, and recorded evoked excitatory postsynaptic potentials (EPSPs) in different cell-types across cortical layers in wS1. We found that excitatory neurons and parvalbumin-expressing inhibitory neurons received the largest EPSPs, dominated by VPM input to L4 and POm input to L5A. In contrast, somatostatin-expressing inhibitory neurons received very little input from either pathway in any layer. Vasoactive intestinal peptide-expressing inhibitory neurons received an intermediate level of excitatory input with less apparent layer-specificity. Our data help understand how wS1 neocortical microcircuits might process and integrate sensory and higher-order inputs.



2005 ◽  
Vol 94 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Jose-Manuel Alonso ◽  
Harvey A. Swadlow

A persistent and fundamental question in sensory cortical physiology concerns the manner in which receptive fields of layer-4 neurons are synthesized from their thalamic inputs. According to a hierarchical model proposed more than 40 years ago, simple receptive fields in layer 4 of primary visual cortex originate from the convergence of highly specific thalamocortical inputs (e.g., geniculate inputs with on-center receptive fields overlap the on subregions of layer 4 simple cells). Here, we summarize studies in the visual cortex that provide support for this high specificity of thalamic input to visual cortical simple cells. In addition, we review studies of GABAergic interneurons in the somatosensory “barrel” cortex with receptive fields that are generated by a very different mechanism: the nonspecific convergence of thalamic inputs with different response properties. We hypothesize that these 2 modes of thalamocortical connectivity onto subpopulations of excitatory and inhibitory neurons constitute a general feature of sensory neocortex and account for much of the diversity seen in layer-4 receptive fields.



2014 ◽  
Vol 220 (6) ◽  
pp. 3185-3209 ◽  
Author(s):  
Astrid Rollenhagen ◽  
Kerstin Klook ◽  
Kurt Sätzler ◽  
Guanxiao Qi ◽  
Max Anstötz ◽  
...  


2018 ◽  
Vol 4 (2) ◽  
pp. 73-98 ◽  
Author(s):  
Tonghui Su ◽  
Yi Lu ◽  
Yang Geng ◽  
Wei Lu ◽  
Yelin Chen

N-methyl-D-aspartate receptors (NMDARs) are a family of ionotropic glutamate receptors mainly known to mediate excitatory synaptic transmission and plasticity. Interestingly, low-dose NMDAR antagonists lead to increased, instead of decreased, functional connectivity; and they could cause schizophrenia- and/or antidepressant-like behavior in both humans and rodents. In addition, human genetic evidences indicate that NMDAR loss of function mutations underlie certain forms of epilepsy, a disease featured with abnormal brain hyperactivity. Together, they all suggest that under certain conditions, NMDAR activation actually lead to inhibition, but not excitation, of the global neuronal network. Apparently, these phenomena are rather counterintuitive to the receptor's basic role in mediating excitatory synaptic transmission. How could it happen? Recently, this has become a crucial question in order to fully understand the complexity of NMDAR function, particularly in disease. Over the past decades, different theories have been proposed to address this question. These include theories of “NMDARs on inhibitory neurons are more sensitive to antagonism”, or “basal NMDAR activity actually inhibits excitatory synapse”, etc. Our review summarizes these efforts, and also provides an introduction of NMDARs, inhibitory neurons, and their relationships with the related diseases. Advances in the development of novel NMDAR pharmacological tools, particularly positive allosteric modulators, are also included to provide insights into potential intervention strategies.



2020 ◽  
Vol 6 (17) ◽  
pp. eaaz0517 ◽  
Author(s):  
You-Hyang Song ◽  
Yang-Sun Hwang ◽  
Kwansoo Kim ◽  
Hyoung-Ro Lee ◽  
Jae-Hyun Kim ◽  
...  

Somatostatin (SST) is a neuropeptide expressed in a major subtype of GABAergic interneurons in the cortex. Despite abundant expression of SST and its receptors, their modulatory function in cortical processing remains unclear. Here, we found that SST application in the primary visual cortex (V1) improves visual discrimination in freely moving mice and enhances orientation selectivity of V1 neurons. We also found that SST reduced excitatory synaptic transmission to parvalbumin-positive (PV+) fast-spiking interneurons but not to regular-spiking neurons. Last, using serial block-face scanning electron microscopy (SBEM), we found that axons of SST+ neurons in V1 often contact other axons that exhibit excitatory synapses onto the soma and proximal dendrites of the PV+ neuron. Collectively, our results demonstrate that the neuropeptide SST improves visual perception by enhancing visual gain of V1 neurons via a reduction in excitatory synaptic transmission to PV+ inhibitory neurons.



2002 ◽  
Vol 87 (6) ◽  
pp. 2904-2914 ◽  
Author(s):  
Carl C. H. Petersen

The short-term plasticity of synaptic transmission between excitatory neurons within a barrel of layer 4 rat somatosensory neocortex was investigated. Action potentials in presynaptic neurons at frequencies ranging from 1 to 100 Hz evoked depressing postsynaptic excitatory postsynaptic potentials (EPSPs). Recovery from synaptic depression followed an exponential time course with best-fit parameters that differed greatly between individual synaptic connections. The average maximal short-term depression was close to 0.5 with a recovery time constant of around 500 ms. Analysis of each individual sweep showed that there was a correlation between the amplitude of the response to the first and second action potentials such that large first EPSPs were followed by smaller than average second EPSPs and vice versa. Short-term depression between excitatory layer 4 neurons can thus be termed use dependent. A simple model describing use-dependent short-term plasticity was able to closely simulate the experimentally observed dynamic behavior of these synapses for regular spike trains. More complex irregular trains of 10 action potentials occurring within 500 ms were initially well described, but during the train errors increased. Thus for short periods of time the dynamic behavior of these synapses can be predicted accurately. In conjunction with data describing the connectivity, this forms a first step toward computational modeling of the excitatory neuronal network of layer 4 barrel cortex. Simulation of whisking-evoked activity suggests that short-term depression may provide a mechanism for enhancing the detection of objects within the whisker space.



Sign in / Sign up

Export Citation Format

Share Document