scholarly journals Studies into the determinants of skeletal muscle oxygen consumption: novel insight from near‐infrared diffuse correlation spectroscopy

2019 ◽  
Vol 597 (11) ◽  
pp. 2887-2901 ◽  
Author(s):  
Wesley J. Tucker ◽  
Ryan Rosenberry ◽  
Darian Trojacek ◽  
Houda H. Chamseddine ◽  
Carrie A. Arena‐Marshall ◽  
...  
2013 ◽  
Vol 114 (2) ◽  
pp. 230-237 ◽  
Author(s):  
Terence E. Ryan ◽  
Jared T. Brizendine ◽  
Kevin K. McCully

Near-infrared spectroscopy (NIRS) can be used to measure muscle oxygen consumption (mVO2) using arterial occlusions. The recovery rate of mVO2after exercise can provide an index of skeletal muscle mitochondrial function. The purpose of this study was to test the influence of exercise modality and intensity on NIRS measurements of mitochondrial function. Three experiments were performed. Thirty subjects (age: 18–27 yr) were tested. NIRS signals were corrected for blood volume changes. The recovery of mVO2after exercise was fit to a monoexponential curve, and a rate constant was calculated (directly related to mitochondrial function). No differences were found in NIRS rate constants for VOL and ES exercises (2.04 ± 0.57 vs. 2.01 ± 0.59 min−1for VOL and ES, respectively; P = 0.317). NIRS rate constants were independent of the contraction frequency for both VOL and ES (VOL: P = 0.166 and ES: P = 0.780). ES current intensity resulted in significant changes to the normalized time-tension integral (54 ± 11, 82 ± 7, and 100 ± 0% for low, medium, and high currents, respectively; P < 0.001) but did not influence NIRS rate constants (2.02 ± 0.54, 1.95 ± 0.44, 2.02 ± 0.46 min−1for low, medium, and high currents, respectively; P = 0.771). In summary, NIRS measurements of skeletal muscle mitochondrial function can be compared between VOL and ES exercises and were independent of the intensity of exercise. NIRS represents an important new technique that is practical for testing in research and clinical settings.


Author(s):  
Miles F. Bartlett ◽  
Scott M. Jordan ◽  
Dennis M. Hueber ◽  
Michael D. Nelson

Near-infrared diffuse correlation spectroscopy (DCS) is increasingly utilized to study relative changes in skeletal muscle blood flow. However, most diffuse correlation spectrometers assume that tissue optical properties- such as absorption (μa) and reduced scattering (μ's) coefficients- remain constant during physiological provocations, which is untrue for skeletal muscle. Here, we interrogate how changes in tissue μa and μ's affect DCS calculations of blood flow index (BFI). We recalculated BFI using raw autocorrelation curves and μa/μ's values recorded during a reactive hyperemia protocol in 16 healthy young individuals. First, we show that incorrectly assuming baseline μa and μ's substantially affects peak BFI and BFI slope when expressed in absolute terms (cm2/s, p<0.01) but these differences are abolished when expressed in relative terms (% baseline). Next, to evaluate the impact of physiologic changes in μa and μ's, we compared peak BFI and BFI slope when μa and μ's were held constant throughout the reactive hyperemia protocol versus integrated from a 3s-rolling average. Regardless of approach, group means for peak BFI and BFI slope did not differ. Group means for peak BFI and BFI slope were also similar following ad absurdum analyses, where we simulated supraphysiologic changes in μa/μ's. In both cases, however, we identified individual cases where peak BFI and BFI slope were indeed affected, with this result being driven by relative changes in μa over μ's. Overall, these results provide support for past reports in which μa/μ's were held constant but also advocate for real-time incorporation of μa and μ's moving forward.


1980 ◽  
Vol 238 (3) ◽  
pp. H331-H339 ◽  
Author(s):  
S. H. Nellis ◽  
S. F. Flaim ◽  
K. M. McCauley ◽  
R. Zelis

Oxygen consumption (VO2) in an isolated, autoperfused, statically exercising canine gracilis muscle (2.5% P0) was studied in low blood flow (Q) states induced by constant norepinephrine (NE) infusion and by mechanical occlusion (MO). Q and VO2 were evaluated at rest (Qc and VO2c), after 5 min of exercise (Qe and VO2e) and after 5 more min of exercise with either NE or MO (Qt and VO2t). Data were normalized and plotted as the VO2e-VO2t)/(VO2c-VO2e) vs. (Qe-Qt)/(Qc-Qe) and equations of the lines for NE (y = 0.090x + 0.048) and for MO (y = 0.488x + 0.070) were determined. The slopes of the lines, tested by analysis of covariance, were significantly different (P less than 0.005). These data indicate that when NE reduced Q during exercise, the exercise induced in VO2 was protected to a greater degree than when MO reduced Q under similar conditions. To determine if the effect of NE on VO2 was secondary to a beta-adrenergic-receptor-mediated of skeletal muscle metabolic processes, the experiments were repeated in the presence of beta-blockade with propranolol. In the presence of beta-blockade, the effects of NE on skeletal muscle VO2 were unchanged. It is therefore hypothesized that the mechanism of this effect of NE may be an increase in the efficiency of oxygen extraction resulting from a redistribution of blood flow to more active muscle fiber regions.


2020 ◽  
Vol 318 (1) ◽  
pp. R81-R88
Author(s):  
Wesley J. Tucker ◽  
Ryan Rosenberry ◽  
Darian Trojacek ◽  
Belinda Sanchez ◽  
Robert F. Bentley ◽  
...  

Near-infrared diffuse correlation spectroscopy (NIR-DCS) is an emerging technology for simultaneous measurement of skeletal muscle microvascular oxygen delivery and utilization during exercise. The extent to which NIR-DCS can track acute changes in oxygen delivery and utilization has not yet been fully established. To address this knowledge gap, 14 healthy men performed rhythmic handgrip exercise at 30% maximal voluntary contraction, with and without isolated brachial artery compression, designed to acutely reduce convective oxygen delivery to the exercising muscle. Radial artery blood flow (Duplex Ultrasound) and NIR-DCS derived variables [blood flow index (BFI), tissue oxygen saturation ([Formula: see text]), and metabolic rate of oxygen ([Formula: see text])] were simultaneously measured. During exercise, both radial artery blood flow (+51.6 ± 20.3 mL/min) and DCS-derived BFI (+155.0 ± 82.2%) increased significantly ( P < 0.001), whereas [Formula: see text] decreased −7.9 ± 6.2% ( P = 0.002) from rest. Brachial artery compression during exercise caused a significant reduction in both radial artery blood flow (−32.0 ± 19.5 mL/min, P = 0.001) and DCS-derived BFI (−57.3 ± 51.1%, P = 0.01) and a further reduction of [Formula: see text] (−5.6 ± 3.8%, P = 0.001) compared with exercise without compression. [Formula: see text] was not significantly reduced during arterial compression ( P = 0.83) due to compensatory reductions in [Formula: see text], driven by increases in deoxyhemoglobin/myoglobin (+7.1 ± 6.1 μM, P = 0.01; an index of oxygen extraction). Together, these proof-of-concept data help to further validate NIR-DCS as an effective tool to assess the determinants of skeletal muscle oxygen consumption at the level of the microvasculature during exercise.


Sign in / Sign up

Export Citation Format

Share Document