scholarly journals A flow of cerebrospinal fluid along the central canal of the spinal cord of the rabbit and communications between this canal and the sacral subarachnoid space.

1965 ◽  
Vol 181 (4) ◽  
pp. 785-800 ◽  
Author(s):  
M W Bradbury ◽  
W Lathem
1978 ◽  
Vol 48 (6) ◽  
pp. 970-974 ◽  
Author(s):  
A. Everette James ◽  
William J. Flor ◽  
Gary R. Novak ◽  
Ernst-Peter Strecker ◽  
Barry Burns

✓ The central canal of the spinal cord has been proposed as a significant compensatory alternative pathway of cerebrospinal fluid (CSF) flow in hydrocephalus. Ten dogs were made hydrocephalic by a relatively atraumatic experimental model that simulates the human circumstance of chronic communicating hydrocephalus. The central canal was studied by histopathology and compared with 10 normal control dogs. In both groups the central canal of the spinal cord was normal in size, configuration, and histological appearance. In this experimental model dilatation of the canal and increased movement of CSF does not appear to be a compensatory alternative pathway.


2004 ◽  
Vol 62 (3b) ◽  
pp. 885-888
Author(s):  
Donizeti Honorato ◽  
Wilson Borges ◽  
Antonio Augusto Roth Vargas ◽  
Ricardo Ramina

Syringohydromyelia is defined as a longitudinal dilatation of the central canal of the spinal cord with accumulated cerebrospinal fluid. This condition may cause neurologic deficits when the cavity enlarges and compresses the spinal cord. We present the case of a 33 years-old female with progressive paraparesis caused by syringohydromyelia. This patient underwent previously multiple clinical and surgical treatments for severe form of neurocysticercosis. Surgical decompression of the posterior fossa and syringostomy resolved the neurologic symptoms. The possibility of syringohydromyelia should be considered in the case of patients who have previously undergone surgical and clinical treatment for severe form of neurocysticercosis.


1974 ◽  
Vol 41 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Howard M. Eisenberg ◽  
James E. McLennan ◽  
Keasley Welch

✓ Cats were made hydrocephalic by cisternal instillation of kaolin. Three to 8 weeks later it was found by perfusion between the ventricular system and the spinal subarachnoid space that communication had been reestablished through a demonstrably dilated central canal of the spinal cord. Absorption of fluid from the ventricular system, measured both by ventriculospinal perfusion and, after ligation of the spinal cord, by perfusion between the lateral ventricles, was found to be indistinguishable from zero over a wide range of ventricular pressure.


2005 ◽  
Vol 127 (7) ◽  
pp. 1099-1109 ◽  
Author(s):  
C. D. Bertram ◽  
A. R. Brodbelt ◽  
M. A. Stoodley

A two-dimensional axi-symmetric numerical model is constructed of the spinal cord, consisting of elastic cord tissue surrounded by aqueous cerebrospinal fluid, in turn surrounded by elastic dura. The geometric and elastic parameters are simplified but of realistic order, compared with existing measurements. A distal reflecting site models scar tissue formed by earlier trauma to the cord, which is commonly associated with syrinx formation. Transients equivalent to both arterial pulsation and percussive coughing are used to excite wave propagation. Propagation is investigated in this model and one with a central canal down the middle of the cord tissue, and in further idealized versions of it, including a model with no cord, one with a rigid cord, one with a rigid dura, and a double-length untapered variant of the rigid-dura model. Analytical predictions for axial and radial wave-speeds in these different situations are compared with, and used to explain, the numerical outcomes. We find that the anatomic circumstances of the spinal cerebrospinal fluid cavity probably do not allow for significant wave steepening phenomena. The results indicate that wave propagation in the real cord is set by the elastic properties of both the cord tissue and the confining dura mater, fat, and bone. The central canal does not influence the wave propagation significantly.


1995 ◽  
Vol 82 (5) ◽  
pp. 802-812 ◽  
Author(s):  
Thomas H. Milhorat ◽  
Anthony L. Capocelli ◽  
Archinto P. Anzil ◽  
Rene M. Kotzen ◽  
Robert H. Milhorat

✓ This report summarizes neuropathological, clinical, and general autopsy findings in 105 individuals with nonneoplastic syringomyelia. On the basis of detailed histological findings, three types of cavities were distinguished: 1) dilations of the central canal that communicated directly with the fourth ventricle (47 cases); 2) noncommunicating (isolated) dilations of the central canal that arose below a syrinx-free segment of spinal cord (23 cases); and 3) extracanalicular syrinxes that originated in the spinal cord parenchyma and did not communicate with the central canal (35 cases). The incidence of communicating syrinxes in this study reflects an autopsy bias of morbid conditions such as severe birth defects. Communicating central canal syrinxes were found in association with hydrocephalus. The cavities were lined wholly or partially by ependyma and their overall length was influenced by age-related stenosis of the central canal. Noncommunicating central canal syrinxes arose at a variable distance below the fourth ventricle and were associated with disorders that presumably affect cerebrospinal fluid dynamics in the spinal subarachnoid space, such as the Chiari I malformation, basilar impression, and arachnoiditis. These cavities were usually defined rostrally and caudally by stenosis of the central canal and were much more likely than communicating syrinxes to dissect paracentrally into the parenchymal tissues. The paracentral dissections of the central canal syrinxes occurred preferentially into the posterolateral quadrant of the spinal cord. Extracanalicular (parenchymal) syrinxes were found typically in the watershed area of the spinal cord and were associated with conditions that injure spinal cord tissue (for example, trauma, infarction, and hemorrhage). A distinguishing feature of this type of cavitation was its frequent association with myelomalacia. Extracanalicular syrinxes and the paracentral dissections of central canal syrinxes were lined by glial or fibroglial tissue, ruptured frequently into the spinal subarachnoid space, and were characterized by the presence of central chromatolysis, neuronophagia, and Wallerian degeneration. Some lesions extended rostrally into the medulla or pons (syringobulbia). Although clinical information was incomplete, simple dilations of the central canal tended to produce nonspecific neurological findings such as spastic paraparesis, whereas deficits associated with extracanalicular syrinxes and the paracentral dissections of central canal syrinxes included segmental signs that were referable to affected nuclei and tracts. It is concluded that syringomyelia has several distinct cavitary patterns with different mechanisms of pathogenesis that probably determine the clinical features of the condition.


1980 ◽  
Vol 73 (11) ◽  
pp. 798-806 ◽  
Author(s):  
Bernard Williams

Discussion of the pathogenesis of syringomyelia involves considering the origin of the fluid and also the forces which cause that fluid to break down the structure of the cord. When cerebrospinal fluid (CSF) appears to be the destructive element, it commonly enters through a patent central canal running from the fourth ventricle to the inside of the syrinx. In both clinical and experimental situations pressure differences may be measured which suck on the hindbrain, particularly the cerebellar tonsils, producing deformities. These pressure differences may also suck fluid into the syrinx. In other cases, even when a communication does not appear to be patent, the hindbrain abnormalities are usually present and suck effect may usually be demonstrated and its correction be accompanied by clinical improvement. Other sources of fluid within a syrinx include liquefaction of haematomata after traumatic paraplegia and transudation of fluid from intrinsic spinal tumours. Once fluid is present within a cord cavity it may pulsate upwards and downwards in response to fluid movements in the subarachnoid space, the most energetic of which result from venous influences. Such movement, ‘slosh’, may cause the cavities to extend at either end giving rise to upward and downward extension from a post-traumatic cord cyst and sometimes to syringobulbia. Cord ischaemia, venous congestion and transport of fluid along perivascular spaces may all play a part in the maintainance of cord cavities or the progression of the clinical disabilities.


1987 ◽  
Vol 232 (1267) ◽  
pp. 193-203 ◽  

An immunocytochemical method that localizes GABA in glutaraldehyde- fixed tissue has been applied to the study of the Xenopus embryo spinal cord. This procedure stained an anatomical class of neuron, which had somata forming two more or less continuous rows, one on either side of the central canal, in the ventral part of the spinal cord. The total number of stained neurons in the stage 37–38 embryo spinal cord was about 300. The medial surface of the soma protruded into the central canal and had a brush border which electron microscope studies showed to consist of many microvilli or stereocilia and one or two cilia. The external end of the neuron soma had an ipsilateral ascending axon. The axon of many of these neurons had a growth cone which was also clearly stained. We propose calling these neurons ‘Kolmer–Agduhr cells’ after W. Kolmer and E. Agduhr who described them in the spinal cords of many vertebrate classes. Their early embryonic origin, GABA-like immunoreactivity, axonal projections and distribution as a whole population have not previously been known.


1976 ◽  
Vol 45 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Peter V. Hall ◽  
John E. Kalsbeck ◽  
Henry N. Wellman ◽  
Robert L. Campbell ◽  
Sidney Lewis

✓ Kaolin-induced hydrosyringomyelia in dogs has been investigated by radioisotope ventriculography using both cerebrospinal fluid radioassay and scintigraphy. The hydromyelic central canal can be differentiated from the spinal subarachnoid space by scintigraphy. Serial studies show that hydromyelia arises rapidly to decompress the associated hydrocephalus in surviving animals. Syringomyelia, after a delayed onset, originates from the enlarged central canal. Radioisotope ventriculography may be a useful clinical aid in the diagnosis of hydrosyringomyelia.


Sign in / Sign up

Export Citation Format

Share Document