scholarly journals Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation.

1983 ◽  
Vol 345 (1) ◽  
pp. 525-532 ◽  
Author(s):  
E Hultman ◽  
H Sjöholm
1973 ◽  
Vol 44 (5) ◽  
pp. 479-491 ◽  
Author(s):  
Patricia G. B. Baker ◽  
R. F. Mottram

1. Methods are described for study of metabolism of human skeletal muscle in situ, at rest and during mild sustained contraction in the fed and fasted states. 2. At rest the average oxygen uptake was 0.29 ml min−1 100 ml of muscle−1 and the carbon dioxide output was 0.22 ml. Glucose uptake was 0.49 mg min−1 100 ml of muscle−1. The respiratory quotient was 0.75, indicating that most of the glucose was being stored. 3. When subjects made hand-grips of 5% of their maximal voluntary contraction force (5% MVC) the oxygen and carbon dioxide exchanges both increased by six times while the glucose uptake increased by 70% of the resting value. 4. A 7 h fast before the observations were made severely decreased both resting and exercising glucose uptake but produced no other alteration in the metabolism of the muscle.


Biomaterials ◽  
2019 ◽  
Vol 198 ◽  
pp. 259-269 ◽  
Author(s):  
Alastair Khodabukus ◽  
Lauran Madden ◽  
Neel K. Prabhu ◽  
Timothy R. Koves ◽  
Christopher P. Jackman ◽  
...  

1978 ◽  
Vol 45 (6) ◽  
pp. 852-857 ◽  
Author(s):  
P. D. Gollnick ◽  
J. Karlsson ◽  
K. Piehl ◽  
B. Saltin

Experiments were conducted to examine the conversions of phosphorylase b to phosphorylase a in human skeletal muscle during bicycle exercise or isometric contractions. Muscle biopsies were obtained from the vastus lateralis with the needle technique at rest and either during or immediately after activity and frozen in liquid nitrogen within 2--4 s. Total phosphorylase and phosphorylase a activities were differentiated by measurement in the presence and absence of AMP, respectively. At rest 8.5% of the total phosphorylase activity existed in the a form. Little or no change in the percent of phosphorylase in the a form occurred during voluntary dynamic or static muscular activity that produced muscle lactate concentrations in excess of 18 mmol.kg-1 wet muscle. Electrical stimulation of the vastus lateralis muscle also failed to produce an increase in the percentage of phosphorylase a. These data suggest that during exercise the conversion of phosphorylase to the a form is of minor importance. An increased activity of phosphorylase b due to changes in muscle concentrations of ATP, AMP, and inorganic phosphate may regulate glycogenolysis during voluntary exercise in man.


Sign in / Sign up

Export Citation Format

Share Document