Phosphorylase a in human skeletal muscle during exercise and electrical stimulation

1978 ◽  
Vol 45 (6) ◽  
pp. 852-857 ◽  
Author(s):  
P. D. Gollnick ◽  
J. Karlsson ◽  
K. Piehl ◽  
B. Saltin

Experiments were conducted to examine the conversions of phosphorylase b to phosphorylase a in human skeletal muscle during bicycle exercise or isometric contractions. Muscle biopsies were obtained from the vastus lateralis with the needle technique at rest and either during or immediately after activity and frozen in liquid nitrogen within 2--4 s. Total phosphorylase and phosphorylase a activities were differentiated by measurement in the presence and absence of AMP, respectively. At rest 8.5% of the total phosphorylase activity existed in the a form. Little or no change in the percent of phosphorylase in the a form occurred during voluntary dynamic or static muscular activity that produced muscle lactate concentrations in excess of 18 mmol.kg-1 wet muscle. Electrical stimulation of the vastus lateralis muscle also failed to produce an increase in the percentage of phosphorylase a. These data suggest that during exercise the conversion of phosphorylase to the a form is of minor importance. An increased activity of phosphorylase b due to changes in muscle concentrations of ATP, AMP, and inorganic phosphate may regulate glycogenolysis during voluntary exercise in man.

2007 ◽  
Vol 103 (3) ◽  
pp. 1012-1020 ◽  
Author(s):  
T. Gustafsson ◽  
H. Rundqvist ◽  
J. Norrbom ◽  
E. Rullman ◽  
E. Jansson ◽  
...  

Eleven subjects performed one-legged exercise four times per week for 5 wk. The subjects exercised one leg for 45 min with restricted blood flow (R leg), followed by exercise with the other leg at the same absolute workload with unrestricted blood flow (UR leg). mRNA and protein expression were measured in biopsies from the vastus lateralis muscle obtained at rest before the training period, after 10 days, and after 5 wk of training, as well as 120 min after the first and last exercise bouts. Basal Ang-2 and Tie-1 mRNA levels increased in both legs with training. The Ang-2-to-Ang-1 ratio increased to a greater extent in the R leg. The changes in Ang-2 mRNA were followed by similar changes at the protein level. In the R leg, VEGF-A mRNA expression responded transiently after acute exercise both before and after the 5-wk training program. Over the course of the exercise program, there was a concurrent increase in basal VEGF-A protein and VEGFR-2 mRNA in the R leg. Ki-67 mRNA showed a greater increase in the R leg and the protein was localized to the endothelial cells. In summary, the increased translation of VEGF-A is suggested to be caused by the short mRNA burst induced by each exercise bout. The concurrent increase in the Ang-2-to-Ang-1 ratio and the VEGF-expression combined with the higher level of Ki-67 mRNA in the R leg indicate that changes in these systems are of importance also in nonpathological angiogenic condition such as voluntary exercise in humans. It further establish that hypoxia/ischemia-related metabolic perturbation is likely to be involved as stimuli in this process in human skeletal muscle.


2019 ◽  
Vol 316 (4) ◽  
pp. E605-E614 ◽  
Author(s):  
Daniil V. Popov ◽  
Pavel A. Makhnovskii ◽  
Elena I. Shagimardanova ◽  
Guzel R. Gazizova ◽  
Evgeny A. Lysenko ◽  
...  

Reduction in daily activity leads to dramatic metabolic disorders, while regular aerobic exercise training is effective for preventing this problem. The purpose of this study was to identify genes that are directly related to contractile activity in human skeletal muscle, regardless of the level of fitness. Transcriptome changes after the one-legged knee extension exercise in exercised and contralateral nonexercised vastus lateralis muscle of seven men were evaluated by RNA-seq. Transcriptome change at baseline after 2 mo of aerobic training (5/wk, 1 h/day) was evaluated as well. Postexercise changes in the transcriptome of exercised muscle were associated with different factors, including circadian oscillations. To reveal transcriptome response specific for endurance-like contractile activity, differentially expressed genes between exercised and nonexercised muscle were evaluated at 1 and 4 h after the one-legged exercise. The contractile activity-specific transcriptome responses were associated only with an increase in gene expression and were regulated mainly by CREB/ATF/AP1-, MYC/MAX-, and E2F-related transcription factors. Endurance training-induced changes (an increase or decrease) in the transcriptome at baseline were more pronounced than transcriptome responses specific for acute contractile activity. Changes after training were associated with widely different biological processes than those after acute exercise and were regulated by different transcription factors (IRF- and STAT-related factors). In conclusion, adaptation to regular exercise is associated not only with a transient (over several hours) increase in expression of many contractile activity-specific genes, but also with a pronounced change (an increase or decrease) in expression of a large number of genes under baseline conditions.


1999 ◽  
Vol 87 (5) ◽  
pp. 1668-1673 ◽  
Author(s):  
Marni D. Boppart ◽  
Doron Aronson ◽  
Lindsay Gibson ◽  
Ronenn Roubenoff ◽  
Leslie W. Abad ◽  
...  

Eccentric contractions require the lengthening of skeletal muscle during force production and result in acute and prolonged muscle injury. Because a variety of stressors, including physical exercise and injury, can result in the activation of the c-Jun NH2-terminal kinase (JNK) intracellular signaling cascade in skeletal muscle, we investigated the effects of eccentric exercise on the activation of this stress-activated protein kinase in human skeletal muscle. Twelve healthy subjects (7 men, 5 women) completed maximal concentric or eccentric knee extensions on a KinCom isokinetic dynamometer (10 sets, 10 repetitions). Percutaneous needle biopsies were obtained from the vastus lateralis muscle 24 h before exercise (basal), immediately postexercise, and 6 h postexercise. Whereas both forms of exercise increased JNK activity immediately postexercise, eccentric contractions resulted in a much higher activation (15.4 ± 4.5 vs. 3.5 ± 1.4-fold increase above basal, eccentric vs. concentric). By 6 h after exercise, JNK activity decreased back to baseline values. In contrast to the greater activation of JNK with eccentric exercise, the mitogen-activated protein kinase kinase 4, the immediate upstream regulator of JNK, was similarly activated by concentric and eccentric exercise. Because the activation of JNK promotes the phosphorylation of a variety of transcription factors, including c-Jun, the results from this study suggest that JNK may be involved in the molecular and cellular adaptations that occur in response to injury-producing exercise in human skeletal muscle.


1989 ◽  
Vol 66 (2) ◽  
pp. 876-885 ◽  
Author(s):  
E. A. Richter ◽  
K. J. Mikines ◽  
H. Galbo ◽  
B. Kiens

The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2 consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp even though indirect estimates indicated net glycogen synthesis. In contrast, in exercised muscle estimated and biopsy-verified increases in muscle glycogen concentration agreed. Local contraction-induced increases in insulin sensitivity and responsiveness play an important role in postexercise recovery of human skeletal muscle.


1996 ◽  
Vol 270 (3) ◽  
pp. E541-E544 ◽  
Author(s):  
L. M. Odland ◽  
G. J. Heigenhauser ◽  
G. D. Lopaschuk ◽  
L. L. Spriet

Previous literature has indicated that contraction-induced decreases in malonyl-CoA are instrumental in the regulation of fatty acid oxidation during prolonged submaximal exercise. This study was designed to measure malonyl-CoA in human vastus lateralis muscle at rest and during submaximal exercise. Eight males and one female cycled for 70 min (10 min at 40% and 60 min at 65% maximal O2 uptake). Needle biopsies were obtained at rest and at 10 min, 20 min, and 70 min of exercise. Malonyl-CoA content in preexercise biopsy samples determined by high-performance liquid chromatography (HPLC) was 1.53 +/- 0.18 micromol/kg dry mass (dm). Malonyl-CoA content did not change significantly during exercise (1.39 +/- 0.21 at 10 min, 1.46 +/- 0.14 at 20 min, and 1.22 +/- 0.15 micromol/kg dm at 70 min). In contrast, malonyl-CoA content determined by HPLC in perfused rat red gastrocnemius muscle decreased significantly during 20 min of stimulation at 0.7 Hz [3.44 +/- 0.54 to 1.64 +/- 0.23 nmol/g dm, (n=9)]. We conclude that human skeletal muscle malonyl-CoA content 1) is less than reported in rat skeletal muscle at rest, 2) does not decrease with prolonged submaximal exercise, and 3) is not predictive of increased fatty acid oxidation during exercise.


2011 ◽  
Vol 110 (2) ◽  
pp. 433-450 ◽  
Author(s):  
Julien Gondin ◽  
Lorenza Brocca ◽  
Elena Bellinzona ◽  
Giuseppe D'Antona ◽  
Nicola A. Maffiuletti ◽  
...  

The aim of the present study was to define the chronic effects of neuromuscular electrical stimulation (NMES) on the neuromuscular properties of human skeletal muscle. Eight young healthy male subjects were subjected to 25 sessions of isometric NMES of the quadriceps muscle over an 8-wk period. Needle biopsies were taken from the vastus lateralis muscle before and after training. The training status, myosin heavy chain (MHC) isoform distribution, and global protein pattern, as assessed by proteomic analysis, widely varied among subjects at baseline and prompted the identification of two subgroups: an “active” (ACT) group, which performed regular exercise and had a slower MHC profile, and a sedentary (SED) group, which did not perform any exercise and had a faster MHC profile. Maximum voluntary force and neural activation significantly increased after NMES in both groups (+∼30% and +∼10%, respectively). Both type 1 and 2 fibers showed significant muscle hypertrophy. After NMES, both groups showed a significant shift from MHC-2X toward MHC-2A and MHC-1, i.e., a fast-to-slow transition. Proteomic maps showing ∼500 spots were obtained before and after training in both groups. Differentially expressed proteins were identified and grouped into functional categories. The most relevant changes regarded 1) myofibrillar proteins, whose changes were consistent with a fast-to-slow phenotype shift and with a strengthening of the cytoskeleton; 2) energy production systems, whose changes indicated a glycolytic-to-oxidative shift in the metabolic profile; and 3) antioxidant defense systems, whose changes indicated an enhancement of intracellular defenses against reactive oxygen species. The adaptations in the protein pattern of the ACT and SED groups were different but were, in both groups, typical of both resistance (i.e., strength gains and hypertrophy) and endurance (i.e., a fast-to-slow shift in MHC and metabolic profile) training. These training-induced adaptations can be ascribed to the peculiar motor unit recruitment pattern associated with NMES.


1986 ◽  
Vol 70 (5) ◽  
pp. 435-441 ◽  
Author(s):  
Birger Fagher ◽  
Hans Liedholm ◽  
Mario Monti ◽  
Ulrich Moritz

1. The influence of β-adrenoceptor-blockade on skeletal muscle was studied in ten healthy males with propranolol, atenolol and pindolol randomly given for 8 days each in a cross-over double blind test. After 7 days on each drug, muscle function was tested by an isokinetic dynamometer. Thermogenesis in biopsy samples taken from vastus lateralis muscle after a low grade exercise was studied after 8 days on each drug by direct calorimetry with a perfusion microcalorimeter. 2. Before drug administration, a median heat production rate of 0.67 mW/g of muscle was measured. This value was significantly reduced by 25% during propranolol, but no significant change was found during atenolol or pindolol administration. 3. Peak torque decline during isokinetic endurance test changed significantly in knee flexor but not in extensor muscles, from 15% to 27% after propranolol and from 15% to 23% after pindolol. Maximum dynamic strength was unaltered. 4. Our data suggest that blockade of sympathetic β2-receptors decreases thermogenesis in human skeletal muscle and impairs isokinetic endurance.


2000 ◽  
Vol 279 (2) ◽  
pp. H772-H778 ◽  
Author(s):  
R. S. Richardson ◽  
H. Wagner ◽  
S. R. D. Mudaliar ◽  
E. Saucedo ◽  
R. Henry ◽  
...  

Angiogenesis is a component of the multifactoral adaptation to exercise training, and vascular endothelial growth factor (VEGF) is involved in extracellular matrix changes and endothelial cell proliferation. However, there is limited evidence supporting the role of VEGF in the exercise training response. Thus we studied mRNA levels of VEGF, using quantitative Northern analysis, in untrained and trained human skeletal muscle at rest and after a single bout of exercise. Single leg knee-extension provided the acute exercise stimulus and the training modality. Four biopsies were collected from the vastus lateralis muscle at rest in the untrained and trained conditions before and after exercise. Training resulted in a 35% increase in muscle oxygen consumption and an 18% increase in number of capillaries per muscle fiber. At rest, VEGF/18S mRNA levels were similar before (0.38 ± 0.04) and after (1.2 ± 0.4) training. When muscle was untrained, acute exercise greatly elevated VEGF/18S mRNA levels (16.9 ± 6.7). The VEGF/18S mRNA response to acute exercise in the trained state was markedly attenuated (5.4 ± 1.3). These data support the concept that VEGF is involved in exercise-induced skeletal muscle angiogenesis and appears to be subject to a negative feedback mechanism as exercise adaptations occur.


2009 ◽  
Vol 296 (4) ◽  
pp. R1140-R1148 ◽  
Author(s):  
Stefan P. Mortensen ◽  
José González-Alonso ◽  
Laurids T. Bune ◽  
Bengt Saltin ◽  
Henriette Pilegaard ◽  
...  

Plasma ATP is thought to contribute to the local regulation of skeletal muscle blood flow. Intravascular ATP infusion can induce profound limb muscle vasodilatation, but the purinergic receptors and downstream signals involved in this response remain unclear. This study investigated: 1) the role of nitric oxide (NO), prostaglandins, and adenosine as mediators of ATP-induced limb vasodilation and 2) the expression and distribution of purinergic P2 receptors in human skeletal muscle. Systemic and leg hemodynamics were measured before and during 5–7 min of femoral intra-arterial infusion of ATP [0.45–2.45 μmol/min] in 19 healthy male subjects with and without coinfusion of NG-monomethyl-l-arginine (l-NMMA; NO formation inhibitor; 12.3 ± 0.3 (SE) mg/min), indomethacin (INDO; prostaglandin formation blocker; 613 ± 12 μg/min), and/or theophylline (adenosine receptor blocker; 400 ± 26 mg). During control conditions, ATP infusion increased leg blood flow (LBF) from baseline conditions by 1.82 ± 0.14 l/min. When ATP was coinfused with either l-NMMA, INDO, or l-NMMA + INDO combined, the increase in LBF was reduced by 14 ± 6, 15 ± 9, and 39 ± 8%, respectively (all P < 0.05), and was associated with a parallel lowering in leg vascular conductance and cardiac output and a compensatory increase in leg O2 extraction. Infusion of theophylline did not alter the ATP-induced leg hyperemia or systemic variables. Real-time PCR analysis of the mRNA content from the vastus lateralis muscle of eight subjects showed the highest expression of P2Y2 receptors of the 10 investigated P2 receptor subtypes. Immunohistochemistry showed that P2Y2 receptors were located in the endothelium of microvessels and smooth muscle cells, whereas P2X1 receptors were located in the endothelium and the sacrolemma. Collectively, these results indicate that NO and prostaglandins, but not adenosine, play a role in ATP-induced vasodilation in human skeletal muscle. The expression and localization of the nucleotide selective P2Y2 and P2X1 receptors suggest that these receptors may mediate ATP-induced vasodilation in skeletal muscle.


2015 ◽  
Vol 118 (5) ◽  
pp. 569-578 ◽  
Author(s):  
Ulrika Raue ◽  
Bozena Jemiolo ◽  
Yifan Yang ◽  
Scott Trappe

The cell surface receptor Fn14/TWEAKR was recently reported by our laboratory to be a prominent marker in the resistance exercise (RE) induced Transcriptome. The purpose of the present study was to extend our Transcriptome findings and investigate the gene and protein expression time course of markers in the TWEAK-Fn14 pathway following RE or run exercise (RUN). Vastus lateralis muscle biopsies were obtained from 6 RE subjects [25 ± 4 yr, 1-repetition maximum (RM): 99 ± 27 kg] pre- and 0, 1, 2, 4, 8, 12, and 24 h post RE (3 × 10 at 70% 1-RM). Lateral gastrocnemius biopsies were obtained from 6 RUN subjects [25 ± 4 yr, maximum oxygen uptake (V̇o2max): 63 ± 8 ml·kg−1·min−1] pre- and 0, 1, 2, 4, 8, 12, and 24 h after a 30-min RUN (75% V̇o2max). After RE, Fn14 gene and protein expression were induced ( P < 0.05) and peaked at 8 and 12 h, respectively. Downstream markers analyzed showed evidence of TWEAK-Fn14 signaling through the alternative NF-κB pathway after RE. After RUN, Fn14 gene expression was induced ( P < 0.05) to a much lesser extent and peaked at 24 h. Fn14 protein expression was only measurable on a sporadic basis, and there was weak evidence of alternative NF-κB pathway signaling after RUN. TWEAK gene and protein expression were not influenced by either exercise mode. These are the first human data to show a transient activation of the TWEAK-Fn14 axis in the recovery from exercise, and our data suggest the level of activation is exercise mode dependent. Furthermore, our collective data support a myogenic role for TWEAK-Fn14 through the alternative NF-κB pathway in human skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document