scholarly journals A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy

2008 ◽  
Vol 586 (1) ◽  
pp. 283-291 ◽  
Author(s):  
Espen E. Spangenburg ◽  
Derek Le Roith ◽  
Chris W. Ward ◽  
Sue C. Bodine
1999 ◽  
Vol 86 (1) ◽  
pp. 313-319 ◽  
Author(s):  
Pamela Mitchell ◽  
Tom Steenstrup ◽  
Kevin Hannon

The potential role of the fibroblast growth factor (FGF) family during stretch-induced postnatal skeletal muscle hypertrophy was analyzed by using an avian wing-weighting model. After 2 or 11 days of weighted stretch, anterior latissimus dorsi (ALD) muscles were, on average, 34 ( P < 0.01) and 85% ( P < 0.01) larger, respectively, than unweighted ALD control muscles. By using quantitative RT-PCR, FGF-1 mRNA expression was found to be significantly decreased in ALD muscles stretched for 2 or 11 days. In contrast, FGF-4 and FGF-10 mRNA expression was significantly increased 2 days after initiation of stretch. FGF-2, FGF-10, fibroblast growth factor receptor 1, and FREK mRNA expression was significantly increased at 11 days poststretch. Increases in FGF-2 and FGF-4 protein could be detected throughout the myofiber periphery after 11 days of stretch. On a cellular level, FGF-2 and FGF-4 proteins were differentially localized. This differential expression pattern and protein localization of the FGF family in response to stretch-induced hypertrophy suggest distinct roles for individual FGFs during the postnatal hypertrophy process.


2006 ◽  
Vol 100 (6) ◽  
pp. 1778-1784 ◽  
Author(s):  
Elisabeth R. Barton

Insulin-like growth factor I (IGF-I) is a critical protein for skeletal muscle development and regeneration. Its ability to promote skeletal muscle hypertrophy has been demonstrated by several methods. Alternative splicing of the Igf-1 gene does not affect the mature IGF-I protein but does produce different E peptide extensions, which have been reported to modify the potency of IGF-I. Viral-mediated delivery of murine IGF-IA and IGF-IB into skeletal muscle of 2-wk-old and 6-mo-old mice was utilized to compare the effects of the isoforms on muscle mass. In young mice, tissue content of IGF-I protein was significantly higher in rAAV-treated muscles than control muscles at 1, 2, and 4 mo postinjection. Viral injection of IGF-IB produced two- to sevenfold more IGF-I than rAAVIGF-IA. Hypertrophy was observed 2 and 4 mo postinjection, where both rAAVIGF-IA and rAAVIGF-IB were equally effective in increasing muscle mass. These results suggest that there is a threshold of IGF-I production necessary to promote muscle hypertrophy in young growing animals regardless of isoform. In 6-mo-old animals, only rAAVIGF-IA produced significant increases in muscle size, even though increased IGF-I content was observed after injection of both isoforms. Therefore, the ability for IGF-IB to promote muscle hypertrophy is only effective in growing animals, suggesting that the bioavailability of this isoform or its receptor affinity diminishes with age.


2006 ◽  
Vol 31 (6) ◽  
pp. 771-772 ◽  
Author(s):  
David A. Hood ◽  
Thomas J. Hawke

Muscle stem cells are a population of cells that are important for both adaptations to exercise and muscle regeneration. This symposium was designed to highlight the role of these cells during muscle hypertrophy and development, and in response to insulin-like growth factor-1 (IGF-1) induced stimulation.


FEBS Letters ◽  
2017 ◽  
Vol 591 (5) ◽  
pp. 801-809 ◽  
Author(s):  
Kristoffer B. Sugg ◽  
Michael A. Korn ◽  
Dylan C. Sarver ◽  
James F. Markworth ◽  
Christopher L. Mendias

Sign in / Sign up

Export Citation Format

Share Document