scholarly journals Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats

2012 ◽  
Vol 590 (11) ◽  
pp. 2783-2799 ◽  
Author(s):  
Vernon W. Dolinsky ◽  
Kelvin E. Jones ◽  
Robinder S. Sidhu ◽  
Mark Haykowsky ◽  
Michael P. Czubryt ◽  
...  
2019 ◽  
Vol 19 (3) ◽  
pp. 265-270 ◽  
Author(s):  
Hojun Lee ◽  
In-Gyu Kim ◽  
Changsu Sung ◽  
Tae-Bong Jeon ◽  
Kibum Cho ◽  
...  

2008 ◽  
Vol 31 (5) ◽  
pp. 307 ◽  
Author(s):  
Didier Saey ◽  
Thierry Troosters

Peripheral muscle dysfunction is a recognized and important systemic consequence of many chronic diseases. Peripheral muscle weakness is associated with excess utilization of health care recourses, morbidity and /or mortality in patients with COPD, congestive heart failure, liver and frail elderly. In the latter group, muscle weakness was associated with significant increase in falling and falling related injury. Exercise training does enhance skeletal muscle function and exercise performance. In addition, patients who start a training program with impaired skeletal muscle function may be more likely to respond adequately to an exercise training program. It is beyond the scope of the present review to discuss in detail the factors that may contribute to muscle dysfunction in chronic conditions. Clearly, muscle weakness is multi-factorial. Factors associated with skeletal muscle force are general factors (such as age, body weight, sex), disease related factors (such as inactivity) and disease specific factors (for example in COPD drug treatment, i.e. corticosteroid treatment, inflammation, oxidative stress and hypoxia have been shown to contribute to muscle dysfunction). This review will focus on the different ways to assess skeletal muscle function in patients with chronic disease. More specifically, techniques to assess skeletal muscle strength, skeletal muscle endurance and skeletal muscle fatigue will be discussed. For the American College of Sport Medicine (ACSM) not only muscle strength but also muscle endurance are health- related fitness components. Loss in one of these muscle characteristics results in impaired muscle. Muscle function tests are very specific to the muscle group tested, the type of contraction, the velocity of muscle motion, the type of equipment and the joint range of motion. Results of any test are specific to the procedures used. Individuals should participate in familiarization sessions with the equipment, and adhere to a specific protocol in order to obtain a true and reliable score. A change in one’s muscular fitness over time can be based on the absolute value of the external force (Newton (N)), but when comparisons are made between individuals, the values should be expressed as relative values (percentage of a predicted normal value). In both cases, caution must be taken in the interpretation of the result because the norms may not include a representative sample of the individual being measured, a standardized protocol may be absent, or the exact test being used may differ.


2016 ◽  
Vol 17 (3) ◽  
pp. 497-510 ◽  
Author(s):  
Michael McLeod ◽  
Leigh Breen ◽  
D. Lee Hamilton ◽  
Andrew Philp

2019 ◽  
Vol 126 (2) ◽  
pp. 363-375 ◽  
Author(s):  
Angus Lindsay ◽  
Alexie A. Larson ◽  
Mayank Verma ◽  
James M. Ervasti ◽  
Dawn A. Lowe

Mutation to the dystrophin gene causes skeletal muscle weakness in patients with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD). Deliberation continues regarding implications of prescribing exercise for these patients. The purpose of this study was to determine whether isometric resistance exercise (~10 tetanic contractions/session) improves skeletal muscle strength and histopathology in the mdx mouse model of DMD. Three isometric training sessions increased in vivo isometric torque (22%) and contractility rates (54%) of anterior crural muscles of mdx mice. Mice expressing a BMD-causing missense mutated dystrophin on the mdx background showed comparable increases in torque (22%), while wild-type mice showed less change (11%). Increases in muscle function occurred within 1 h and peaked 3 days posttraining; however, the adaptation was lost after 7 days unless retrained. Six isometric training sessions over 4 wk caused increased isometric torque (28%) and contractility rates (22–28%), reduced fibrosis, as well as greater uniformity of fiber cross-sectional areas, fewer embryonic myosin heavy-chain-positive fibers, and more satellite cells in tibialis anterior muscle compared with the contralateral untrained muscle. Ex vivo functional analysis of isolated extensor digitorum longus (EDL) muscle from the trained hindlimb revealed greater absolute isometric force, lower passive stiffness, and a lower susceptibility to eccentric contraction-induced force loss compared with untrained EDL muscle. Overall, these data support the concept that exercise training in the form of isometric tetanic contractions can improve contractile function of dystrophin-deficient muscle, indicating a potential role for enhancing muscle strength in patients with DMD and BMD. NEW & NOTEWORTHY We focused on adaptive responses of dystrophin-deficient mouse skeletal muscle to isometric contraction training and report that in the absence of dystrophin (or in the presence of a mutated dystrophin), strength and muscle histopathology are improved. Results suggest that the strength gains are associated with fiber hypertrophy, reduced fibrosis, increased number of satellite cells, and blunted eccentric contraction-induced force loss in vitro. Importantly, there was no indication that the isometric exercise training was deleterious to dystrophin-deficient muscle.


2011 ◽  
Vol 31 (2) ◽  
pp. 111-119 ◽  
Author(s):  
Jonathan Singer ◽  
Edward H. Yelin ◽  
Patricia P. Katz ◽  
Gabriela Sanchez ◽  
Carlos Iribarren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document