Further Evidence of Margin for Environmental Effects, Termed Fenthreshold, in the Asme Section Iii Design Fatigue Curve for Austenitic Stainless Steels Through the Interaction Between the Pwr Environment and Surface Finish

2021 ◽  
Author(s):  
Alec Mclennan ◽  
Andrew Morley ◽  
Sam Cuvilliez
Author(s):  
Thomas Métais ◽  
Stéphan Courtin ◽  
Pierre Genette ◽  
Laurent De Baglion ◽  
Cédric Gourdin ◽  
...  

Environmentally Assisted Fatigue is receiving nowadays an increased level of attention not only for new builds but also for the installed bases which are currently having their lives extended to 60 years in various countries. To formally integrate these effects, some international codes have already proposed code cases. More specifically, the ASME code has used the NUREG/CR-6909 [1] as the basis for Code Case N-792 [2] and suggests a modification of the austenitic stainless steels fatigue curve combined with a calculation of an environmental penalty factor, namely Fen, which is to be multiplied by the usual fatigue usage factor. The various methodologies proposed are not finalized and there is still a significant level of discussion as can be illustrated by the recent update of NUREG/CR-6909 [3]. In this context, EDF, AREVA and the CEA have also submitted two RCC-M Rules in Probatory Phase (RPP) (equivalent to ASME code-cases) to AFCEN to propose respectively an update of the fatigue curve for austenitic stainless steels and a methodology to incorporate EAF in fatigue evaluations. The approach is globally similar to the one in the ASME code: it consists in an update of the mean air and design fatigue curves as well as the calculation of an environmental penalty factor. Nevertheless, the methodologies differ in their detailed implementation by especially introducing the Fen-integrated which accounts for the environmental effects already covered by the fatigue curves. This paper is the sequel to the proposal already described in [4] [6].


Author(s):  
Claude Faidy

During the past 30 years many fatigue tests and fatigue analysis improvements have been developed in France in order to improve Codified Fatigue Rules of French Nuclear Codes: RCC-M, RSE-M and RCC-MRx. This paper will present comments and proposals for development of these rules associated to Gaps and Needs in order to finalize and justify the AFCEN Codes new rules. Recently 3 new international R&D results confirm possible un-conservative fatigue material data: - High cycle fatigue in air for stainless steel, - Environmental effects on fatigue S-N curve for all materials, and in particular stainless steels, - Fatigue Crack Growth law under PWR environment for stainless steel. In front of these new results, AFCEN is working on a 1st set of rules based on existing knowledge: - Air fatigue curve: mean and design - PWR Environmental effects with detrimental correction factors A periodic up-dating of AFCEN proposed rules will be done using French and International R&D programs with a particular attention on harmonization with other Code rules developed in USA, Japan and Germany, in particular.


Author(s):  
Yukio Takahashi ◽  
Shigeru Tado ◽  
Kazunori Kitamura ◽  
Masataka Nakahira ◽  
Junji Ohmori ◽  
...  

Superconducting magnets are structures which have an important role in Tokamak-type fusion reactor plants. They are huge and complicated structures exposed to very low temperature, 4K and the methods for keeping their integrity need to be newly developed. To maintain their structural integrity during the plant operation, a procedure for structural design was developed as a part of JSME Construction Standard for Superconducting Magnet. General structures and requirements of this procedure basically follow those of class 1 and class 2 components in light water reactor plants as specified in Section III, Division 1 of the ASME Boiler and Pressure Vessel Code, and include the evaluation of primary stress, secondary stress and fatigue damage. However, various new aspects have been incorporated considering the features of superconducting magnet structures. They can be summarized as follows: (i) A new procedure to determine allowable stress intensity value was employed to take advantage of the excellent property of newly developed austenitic stainless steels. (ii) Allowable stress system was simplified considering that only austenitic stainless steels and a nickel-based alloy are planned to be used. (iii) A design fatigue curve at 4K was developed for austenitic stainless steels. (iv) In addition to the conventional fatigue assessment based on design fatigue curves, guidelines for fatigue assessment based on crack growth prediction were added as a non-mandatory appendix to provide a tool of assurance for welded joints which are difficult to evaluate nondestructively during the service.


Author(s):  
Thomas Métais ◽  
Andrew Morley ◽  
Laurent de Baglion ◽  
David Tice ◽  
Gary L. Stevens ◽  
...  

Additional fatigue rules within the ASME Boiler and Pressure Vessel Code have been developed over the past decade or so, such as those in Code Case N-792-1 [1], which provides an acceptable method to describe the effects of BWR and PWR environments on the fatigue life of components. The incorporation of environmental effects into fatigue calculations is performed via an environmental factor, Fen, and depends on factors such as the temperature, dissolved oxygen and strain rate. In the case of strain rate, lower strain rates (i.e., from slow transients) aggravate the Fen factor which counters the long-held notion that step (fast) transients cause the highest fatigue usage. A wide range of other factors, such as surface finish, can have a deleterious impact on fatigue life, but their impact on fatigue life is typically considered by including transition sub-factors to construct the fatigue design curve from the mean behavior air curve rather than in an explicit way, such as the Fen factor. An extensive amount of testing and evaluation has been conducted and reported in References [2] [3] [4] [5] [6] [7] and [8] that were used to both revise the transition factors and devise the Fen equations contained in Code Case N-792-1. The testing supporting the definition of Fen was performed on small-scale laboratory specimens with a polished surface finish on the basis that the Fen factor is applicable to the design curve without any impact on the transition factors. The work initiated by AREVA in 2005 [4] [5] [6] suggested, in testing of austenitic stainless steels, an interaction between the two aggravating effects of surface finish and PWR environment on fatigue damage. These results have been supported by testing carried out independently in the UK by Rolls-Royce and AMEC Foster Wheeler (now Wood Group) [7], also on austenitic stainless steels. The key finding from these investigations is that the combined detrimental effects of a PWR environment and a rough surface finish are substantially less than the sum of the two individual effects. These results are all the more relevant as most nuclear power plant (NPP) components do not have a polished surface finish. Most NPP component surfaces are either industrially ground or installed as-manufactured. The previous studies concluded that explicit consideration of the combined effects of environment and surface finish could potentially be applicable to a wide range of NPP components and would therefore be of interest to a wider community: EDF has therefore authored a draft Code Case introducing a factor, Fen-threshold, which explicitly quantifies the interaction between PWR environment and surface finish, as well as taking some credit for other conservatisms in the sub-factors that comprise the life transition sub-factor used to build the design fatigue curve . The contents of the draft Code Case were presented last year [9]. Since then, other international organizations have also made progress on these topics and developed their own views. The work performed is applicable to Austenitic Stainless Steels only for the time being. This paper aims therefore to present an update of the draft Code Case based on comments received to-date, and introduces some of the research and discussions which have been ongoing on this topic as part of an international EPRI collaborative group on environmental fatigue issues. It is intended to work towards an international consensus for a final version of the ASME Code Case for Fen-threshold.


Author(s):  
T. P. Métais ◽  
G. Stevens ◽  
G. Blatman ◽  
J. C. Le Roux ◽  
R. L. Tregoning

Revised fatigue curves for austenitic stainless steels are currently being considered by several organizations in various countries, including Japan, South Korea, and France. The data available from laboratory tests indicate that the mean air curve considering all available austenitic material fatigue data may be overly conservative compared to a mean curve constructed from only those data representative of a particular type of material. In other words, developing separate fatigue curves for each of the different types of austenitic materials may prove useful in terms of removing excess conservatism in the estimation of fatigue lives. In practice, the fatigue curves of interest are documented in the various international design codes. For example, in the 2009 Addenda of Section III of the ASME Boiler and Pressure Vessel (BPV) Code [1], a revised design air fatigue curve for austenitic materials was implemented that was based on NRC research models [2]. More recently, in Japan, various industrial groups have joined their efforts to create the Design Fatigue Curve Sub-committee (DCFS) with the objective to reassess the fatigue curves [3]. In France, EDF/AREVA and CEA are developing a new fatigue curve for austenitic stainless steels [4]. More specifically, in 2014, EDF presented a paper on high-cycle fatigue analysis which demonstrated that the factor on the strain amplitude could be reduced from 2 to 1.4 for the RCC-M austenitic stainless steel grades [5]. Recently, discussions between EDF and the U.S. Nuclear Regulatory Commission (NRC) have led both parties to recognize that there is a need to exchange worldwide research data from fatigue testing to promote a common, vetted database available to all researchers. These discussions have led EDF and NRC to pursue a collaborative agreement and associated fatigue data exchange, with the intent to assemble all available fatigue data for austenitic materials into a standardized format. The longer term objective is to perform common analyses on the consolidated set of data. This paper summarizes the intent and of the preliminary results of this cooperation and also provides insights from both organizations on possible future activities and participation in the global exchange of fatigue research data.


Author(s):  
Thomas R. Leax

Technical support is provided for a fatigue curve that could potentially be incorporated into Section III of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code. This fatigue curve conservatively accounts for the effects of light water reactor environments on the fatigue behavior of austenitic stainless steels. This paper presents the data, statistical methods, and basis for the design factors appropriate for Code applications. A discussion of the assumptions and methods used in design curve development is presented.


Author(s):  
William James O’Donnell ◽  
William John O’Donnell

Recent studies of the environmental fatigue data for carbon, low alloy and austenitic stainless steels have shown that reactor water effects are significantly less deleterious as temperatures are reduced below 350 °C (662 °F). At temperatures below 150 °C (302 °F) the reduction in life due to reactor water environmental effects is less than a factor of 2, and the existing ASME Code Section III fatigue design curves for air can be used. The latter include a factor of 20 on cycles whereas the ASME Subgroup on Fatigue Strength (SGFS) has determined that a factor of 10 should be used on the mean failure curves which include reactor water effects. These factors account for scatter in the data, surface finish effects, size effects, and environmental effects. Reactor water environmental degradation dependence on temperature is determined using variations of the statistical models developed by Chopra and Shack, Higuchi, Iiada, Asada, Nakamura, Van Der Sluys, Yukawa, Mehta, Leax and Gosselin, References [1 through 22]. Comparisons of the resulting proposed environmental fatigue design criteria with reactor water environmental fatigue data are made. These comparisons show that the Code factors of 2 and 20 on stress and cycles are maintained for air environments, and the 2 and 10 Code factors are maintained for the reactor water environments. Environmental fatigue criteria are given for both worst case strain rates and for arbitrary strain rates. These design criteria do not require the designer to consider sequence of loading, hold times, transient rates, and other operating details which may change during 60 years of plant operation.


Sign in / Sign up

Export Citation Format

Share Document