Effects of Surface Finish on the Fatigue Limit in Austenitic Stainless Steels (Modelling and Experimental Observations)

Author(s):  
M. Kuroda ◽  
T. J. Marrow ◽  
A. Sherry
Author(s):  
Thomas Métais ◽  
Andrew Morley ◽  
Laurent de Baglion ◽  
David Tice ◽  
Gary L. Stevens ◽  
...  

Additional fatigue rules within the ASME Boiler and Pressure Vessel Code have been developed over the past decade or so, such as those in Code Case N-792-1 [1], which provides an acceptable method to describe the effects of BWR and PWR environments on the fatigue life of components. The incorporation of environmental effects into fatigue calculations is performed via an environmental factor, Fen, and depends on factors such as the temperature, dissolved oxygen and strain rate. In the case of strain rate, lower strain rates (i.e., from slow transients) aggravate the Fen factor which counters the long-held notion that step (fast) transients cause the highest fatigue usage. A wide range of other factors, such as surface finish, can have a deleterious impact on fatigue life, but their impact on fatigue life is typically considered by including transition sub-factors to construct the fatigue design curve from the mean behavior air curve rather than in an explicit way, such as the Fen factor. An extensive amount of testing and evaluation has been conducted and reported in References [2] [3] [4] [5] [6] [7] and [8] that were used to both revise the transition factors and devise the Fen equations contained in Code Case N-792-1. The testing supporting the definition of Fen was performed on small-scale laboratory specimens with a polished surface finish on the basis that the Fen factor is applicable to the design curve without any impact on the transition factors. The work initiated by AREVA in 2005 [4] [5] [6] suggested, in testing of austenitic stainless steels, an interaction between the two aggravating effects of surface finish and PWR environment on fatigue damage. These results have been supported by testing carried out independently in the UK by Rolls-Royce and AMEC Foster Wheeler (now Wood Group) [7], also on austenitic stainless steels. The key finding from these investigations is that the combined detrimental effects of a PWR environment and a rough surface finish are substantially less than the sum of the two individual effects. These results are all the more relevant as most nuclear power plant (NPP) components do not have a polished surface finish. Most NPP component surfaces are either industrially ground or installed as-manufactured. The previous studies concluded that explicit consideration of the combined effects of environment and surface finish could potentially be applicable to a wide range of NPP components and would therefore be of interest to a wider community: EDF has therefore authored a draft Code Case introducing a factor, Fen-threshold, which explicitly quantifies the interaction between PWR environment and surface finish, as well as taking some credit for other conservatisms in the sub-factors that comprise the life transition sub-factor used to build the design fatigue curve . The contents of the draft Code Case were presented last year [9]. Since then, other international organizations have also made progress on these topics and developed their own views. The work performed is applicable to Austenitic Stainless Steels only for the time being. This paper aims therefore to present an update of the draft Code Case based on comments received to-date, and introduces some of the research and discussions which have been ongoing on this topic as part of an international EPRI collaborative group on environmental fatigue issues. It is intended to work towards an international consensus for a final version of the ASME Code Case for Fen-threshold.


2011 ◽  
Vol 488-489 ◽  
pp. 97-100 ◽  
Author(s):  
Clemens Vichytil ◽  
G. Mori ◽  
Reinhard Pippan ◽  
M. Panzenböck ◽  
Rainer Fluch

Purpose: Applications for highly corrosive environments and cyclic loading are often made out of austenitic stainless steels. Corrosion fatigue and crack propagation behaviour has been studied to determine failure processes and damage mechanisms. Approach: CrNiMo stabilized austenitic stainless steel and CrMnN austenitic stainless steel in solution annealed and cold worked condition are compared. S/N curves and crack propagation rate curves are recorded in 43 wt% CaCl2solution at 120 °C, which resembles most severe potential service conditions. For comparison these experiments are also performed in inert glycerine. Additionally, the electrochemical behaviour of these materials has been studied. Findings: The CrMnN steels have excellent mechanical properties but are very susceptible to stress corrosion cracking in the test solution. The fatigue limit as well as the threshold for long crack growth are significantly reduced in corrosive environment. Moreover these steels exhibit a remarkable increase in the propagation rate, which is extremely pronounced in the near threshold region. This effect is enhanced by cold working. CrNiMo steels also show a reduction in the fatigue limit, but it is less pronounced compared to CrMnN steels. The threshold is significantly reduced in corrosive environment, but propagation rate is lower in corrosive environment compared to inert glycerine. Possible explanations of this surprising behaviour are discussed.


Author(s):  
Norman Platts ◽  
David Tice ◽  
John Stairmand ◽  
Kevin Mottershead ◽  
Wenzhong Zhang ◽  
...  

High temperature water environments typical of LWR operation are known to significantly reduce the fatigue life of Type 300 series austenitic stainless steels in laboratory studies relative to air environments. This environmental impact on fatigue life has led to the issue of US-NRC Regulatory Guide 1.207 and supporting document NUREG/CR-6909 which predicts significant environmental reduction in fatigue life (characterised by an environmental factor Fen) for a range of actual and design basis transients. However, application of this factor to design curves (obtained from laboratory air data by the application of factors for size, surface finish, environment etc) may be unduly conservative. For example there are reasons to expect that a given surface condition will not have the same impact in air compared to water environments. The aim of the current work was to determine the impact of different surface conditions, typical of operating plant, on the fatigue life in both air and high temperature (300°C) water environments. This work indicates that, in a simulated PWR high temperature water environment, the impact of either a roughly ground/abraded surface finish (simulating flapper wheel dressing) or a simulated surface scratch on fatigue life relative to a polished surface finish is approximately half of the effect observed in ambient temperature air. This suggests that the application of a Fen value calculated in accordance with NUREG/CR-6909 to the design curves may indeed unduly over-estimate the impact of surface finish on fatigue life.


Author(s):  
J. J. Laidler ◽  
B. Mastel

One of the major materials problems encountered in the development of fast breeder reactors for commercial power generation is the phenomenon of swelling in core structural components and fuel cladding. This volume expansion, which is due to the retention of lattice vacancies by agglomeration into large polyhedral clusters (voids), may amount to ten percent or greater at goal fluences in some austenitic stainless steels. From a design standpoint, this is an undesirable situation, and it is necessary to obtain experimental confirmation that such excessive volume expansion will not occur in materials selected for core applications in the Fast Flux Test Facility, the prototypic LMFBR now under construction at the Hanford Engineering Development Laboratory (HEDL). The HEDL JEM-1000 1 MeV electron microscope is being used to provide an insight into trends of radiation damage accumulation in stainless steels, since it is possible to produce atom displacements at an accelerated rate with 1 MeV electrons, while the specimen is under continuous observation.


Sign in / Sign up

Export Citation Format

Share Document