CFD-DEM Simulations of Graphite Particle Collisions in Opposed Jet Mill

2021 ◽  
Author(s):  
Sifan Peng ◽  
Yujia Liu ◽  
Nan Gui ◽  
Xing-Tuan Yang ◽  
Jiyuan Tu ◽  
...  
Author(s):  
Sifan Peng ◽  
Yujia Liu ◽  
Nan Gui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
...  

Abstract Graphite is widely used in nuclear reactors as moderator and structural material. Among present graphite preparation methods, air flow mill is considered to be qualified in the control of particle size and purity, and promising for future mass production. In this work, an opposed jet mill is designed to crush large graphite particles. The opposed jet mill accelerates the particles through two supersonic jet flows in opposite directions, and finally the particles collide in the crushing cavity. In order to estimate the performance of opposed jet mill, it is necessary to solve the coupling calculation of the compressible flow and the collision process of discrete particles. However, the research on calculating the compressible gas solid coupling problems is scarcely rare. In this paper, coupled CFD-DEM model is used to simulate the particle movement process with jet flows and accompanying jet in opposed jet mill. By comparing with experimental results, it is proved that these simulation results of the acceleration process of compressible gas through these nozzles and the collision process of the final two supersonic jet flows in the opposed-jet mill are accurate, with the accuracy model of the coupled CFD-DEM provided. The practice has proved that the contrastive flow mill has a broad application prospect in the production of graphite particles.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 937
Author(s):  
Satyajeet Bhonsale ◽  
Lewis Scott ◽  
Mojtaba Ghadiri ◽  
Jan Van Impe

Spiral jet mills are ubiquitous in the pharmaceutical industry. Breakage and classification in spiral jet mills occur due to complex interactions between the fluid and the solid phases. The study of these interactions requires the use of computational fluid dynamics (CFD) for the fluid phase coupled with discrete element models (DEM) for the particle phase. In this study, we investigate particle dynamics in a 50-mm spiral jet mill through coupled CFD-DEM simulations. The simulations showed that the fluid was significantly decelerated by the presence of the particles in the milling chamber. Furthermore, we study the particle dynamics and collision statistics at two different operating conditions and three different particle loadings. As expected, the particle velocity was affected by both the particle loading and operating pressure. The particles moved slower at low pressures and high loadings. We also found that particle–particle collisions outnumbered particle–wall collisions.


2010 ◽  
Vol 20 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Shengdong Gao ◽  
Udo Fritsching
Keyword(s):  

2021 ◽  
Vol 87 (3) ◽  
Author(s):  
R.A. López ◽  
S.M. Shaaban ◽  
M. Lazar

Space plasmas are known to be out of (local) thermodynamic equilibrium, as observations show direct or indirect evidences of non-thermal velocity distributions of plasma particles. Prominent are the anisotropies relative to the magnetic field, anisotropic temperatures, field-aligned beams or drifting populations, but also, the suprathermal populations enhancing the high-energy tails of the observed distributions. Drifting bi-Kappa distribution functions can provide a good representation of these features and enable for a kinetic fundamental description of the dispersion and stability of these collision-poor plasmas, where particle–particle collisions are rare but wave–particle interactions appear to play a dominant role in the dynamics. In the present paper we derive the full set of components of the dispersion tensor for magnetized plasma populations modelled by drifting bi-Kappa distributions. A new solver called DIS-K (DIspersion Solver for Kappa plasmas) is proposed to solve numerically the dispersion relations of high complexity. The solver is validated by comparing with the damped and unstable wave solutions obtained with other codes, operating in the limits of drifting Maxwellian and non-drifting Kappa models. These new theoretical tools enable more realistic characterizations, both analytical and numerical, of wave fluctuations and instabilities in complex kinetic configurations measured in-situ in space plasmas.


Author(s):  
Jordan Musser ◽  
Ann S Almgren ◽  
William D Fullmer ◽  
Oscar Antepara ◽  
John B Bell ◽  
...  

MFIX-Exa is a computational fluid dynamics–discrete element model (CFD-DEM) code designed to run efficiently on current and next-generation supercomputing architectures. MFIX-Exa combines the CFD-DEM expertise embodied in the MFIX code—which was developed at NETL and is used widely in academia and industry—with the modern software framework, AMReX, developed at LBNL. The fundamental physics models follow those of the original MFIX, but the combination of new algorithmic approaches and a new software infrastructure will enable MFIX-Exa to leverage future exascale machines to optimize the modeling and design of multiphase chemical reactors.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4008
Author(s):  
Błażej Doroszuk ◽  
Robert Król ◽  
Jarosław Wajs

This paper addresses the problem of conveyor transfer station design in harsh operating conditions, aiming to identify and eliminate a failure phenomenon which interrupts aggregate supply. The analyzed transfer station is located in a Polish granite quarry. The study employs laser scanning and reverse engineering methods to map the existing transfer station and its geometry. Next, a discrete element method (DEM) model of granite aggregate has been created and used for simulating current operating conditions. The arch formation has been identified as the main reason for breakdowns. Alternative design solutions for transfer stations were tested in DEM simulations. The most uncomplicated design for manufacturing incorporated an impact plate, and a straight chute has been selected as the best solution. The study also involved identifying areas of the new station most exposed to wear phenomena. A new transfer point was implemented in the quarry and resolved the problem of blockages.


2021 ◽  
Author(s):  
A. Grabowski ◽  
M. Nitka ◽  
J. Tejchman

AbstractThree-dimensional simulations of a monotonic quasi-static interface behaviour between initially dense cohesionless sand and a rigid wall of different roughness during tests in a parallelly guided direct shear test under constant normal stress are presented. Numerical modelling was carried out by the discrete element method (DEM) using clumps in the form of convex non-symmetric irregularly shaped grains. The clumps had an aspect ratio of 1.5. A regular grid of triangular grooves (asperities) along the wall with a different height at the same distance was assumed. The numerical results with clumps were directly compared under the same conditions with our earlier DEM simulations using pure spheres with contact moments with respect to the peak and residual interface friction angle, width of the interface shear zone, ratio between grain slips and grain rotations, distribution of contact forces and stresses. The difference between the behaviour of clumps and pure spheres with contact moments proved to be noticeable in the post-peak regime due to a different particle shape. The rolling resistance model with pure spheres was proved to be limited for capturing particle shape effects. Three different boundary conditions along the interface were proposed for micropolar continua, considering grain rotations and grain slips, wall grain moments and wall grain forces, and normalized interface roughness. The numerical results in this paper offer a better understanding of the interface behaviour of granular bodies in DEM and FEM simulations.


Sign in / Sign up

Export Citation Format

Share Document