Numerical Simulation of Dynamic Response of Foam Aluminum Sandwich Panel Under Impact Load

2021 ◽  
Author(s):  
Wenchao Wan ◽  
Xiaobin Li ◽  
Li Jiang ◽  
Pu Li
Author(s):  
Wenchao Wan ◽  
Xiaobin Li ◽  
Li Jiang ◽  
Pu Li

Abstract The impact resistance of protective structure directly affects the vitality of the ship. Since the excellent energy absorption characteristics and lightweight structural forms, foamed aluminum sandwich panels have gradually replaced stiffened panels and are widely used in local structures and components of vessels. In order to improve the protective ability of the ship structure, the impact resistance of the foam aluminum sandwich panel is studied in this paper. The deformation mechanism of the foam aluminum sandwich panel under the impact of the foam aluminum projectile is simulated by the finite element analysis, and the effect of different core thickness and core strength on the dynamic response of the sandwich panel is studied. An optimized structural form is proposed for the shear failure of foam aluminum sandwich panels. The results show that the optimized structure improves the impact resistance of foam aluminum sandwich panel and the shear resistance of the intermediate core layer. The research of this paper provides reference for the optimization of foam metal sandwich structure and its application in ship protection structure.


2013 ◽  
Vol 364 ◽  
pp. 172-176
Author(s):  
Hui Wei Yang ◽  
Bin Qin ◽  
Zhi Jun Han ◽  
Guo Yun Lu

The dynamic response of fluid-filled hemispherical shell in mass impact is studied by experiment using DHR9401. Combining the time history of impact force with experimental observation of the deformation process, it can be seen that the dynamic response can be divided into four stages: the flattening around the impact point, the forming and expanding outward of shell plastic hinge, the plastic edge region flatten by the punch, and elastic recovery. The experimental results show that: Because the shell filled with liquid, the local impact load that the shell suffered is translated into area load and loads on the inner shell uniformly, so that it has a high carrying capacity. Numerical simulation is used to study the time history of energy absorption of different shell structures. The result shows that the crashworthiness of sandwich fluid-filled shell is improved greatly. Under the certain impact energy, deformation of its inner shell is very small, which can provide effective security space.


2011 ◽  
Vol 94-96 ◽  
pp. 2084-2087 ◽  
Author(s):  
Shun Bo Li ◽  
Jun Yang ◽  
Chen Xi Xia ◽  
Da Yong Chen

Using ANSYS / LS-DYNA to study the dynamic response of square steel tube beam filled with steel-reinforced high-strength concrete under impact loading at different speeds. The numerical simulation results show that: At different conditions of speed, the concrete failure modes are different. The combined action of Steel tube and steel flange makes the stress wave propagation extremely complex in the beam, when the speed increased to a certain value, it made damage to the internal steel flange and flange lateral concrete under impact load, while the concrete between the top of steel flange and steel tube was protected by the combined action.


Author(s):  
Lihong Yang ◽  
Xuyang Li ◽  
Fan Zi ◽  
Shijie Yang ◽  
Zexu Zhang ◽  
...  

2014 ◽  
Vol 21 (1) ◽  
pp. 405-415 ◽  
Author(s):  
Chao-jiao Zhai ◽  
Tang-dai Xia ◽  
Guo-qing Du ◽  
Zhi Ding

Author(s):  
DuJiang Zhang ◽  
ZhenYu Zhao ◽  
ShaoFeng Du ◽  
WeiJie Chen ◽  
Fan Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document