Adaptive Neural Network Based Predictive Control of Nonlinear Systems With Slow Dynamics

2021 ◽  
Author(s):  
Mark Spiller ◽  
Fateme Bakhshande ◽  
Dirk S\xf6ffker
Author(s):  
Mark Spiller ◽  
Fateme Bakhshande ◽  
Dirk Söffker

Abstract In this paper a data-driven approach for model-free control of nonlinear systems with slow dynamics is proposed. The system behavior is described using a local model respectively a neural network. The network is updated online based on a Kalman filter. By predicting the system behavior two control approaches are discussed. One is obtained by calculating a control input from the one step ahead prediction equation using least squares, the other is obtained by solving a standard linear model predictive control problem. The approaches are tested on a constrained nonlinear MIMO system with slow dynamics.


2021 ◽  
pp. 002029402110211
Author(s):  
Tao Chen ◽  
Damin Cao ◽  
Jiaxin Yuan ◽  
Hui Yang

This paper proposes an observer-based adaptive neural network backstepping sliding mode controller to ensure the stability of switched fractional order strict-feedback nonlinear systems in the presence of arbitrary switchings and unmeasured states. To avoid “explosion of complexity” and obtain fractional derivatives for virtual control functions continuously, the fractional order dynamic surface control (DSC) technology is introduced into the controller. An observer is used for states estimation of the fractional order systems. The sliding mode control technology is introduced to enhance robustness. The unknown nonlinear functions and uncertain disturbances are approximated by the radial basis function neural networks (RBFNNs). The stability of system is ensured by the constructed Lyapunov functions. The fractional adaptive laws are proposed to update uncertain parameters. The proposed controller can ensure convergence of the tracking error and all the states remain bounded in the closed-loop systems. Lastly, the feasibility of the proposed control method is proved by giving two examples.


Sign in / Sign up

Export Citation Format

Share Document