Shape Optimization of Pin Fin Arrays Using Gaussian Process Surrogate Models Under Design Constraints

2021 ◽  
Author(s):  
Shinjan Ghosh ◽  
Sudeepta Mondal ◽  
Jayanta Kapat ◽  
Asok Ray
Author(s):  
Shinjan Ghosh ◽  
Sudeepta Mondal ◽  
Jayanta S. Kapat ◽  
Asok Ray

Abstract Internal cooling channels with pin-fin arrays are an important part of gas turbine blade trailing edge design. Short pin-fins act as turbulators in high aspect ratio channels to increase heat transfer and provide structural support to the trailing edge of the blade. Such pin fins however also result in a high pressure drop owing to chaotic flow phenomenon in these highly turbulent flows. High pressure-drop results in higher compressor work due to increased power consumption to push the coolant through these passages. Hence, optimizing the design of pin fin arrays is key to increasing the efficiency of real gas turbine cycles by handling higher turbine inlet temperature and increasing blade life. Moreover, the design process of such pin fin arrays can be computationally very expensive, since it typically involves high-fidelity CFD simulations. The optimization problem involves maximizing Nusselt number, while keeping the friction factor as a constraint. To address this problem, a computationally efficient approach involving Gaussian Processes (GP) surrogate modeling and constrained Bayesian Optimization (BO) has been carried out for optimizing the thermal performance of the pin fin arrays. The multidimensional search space of design parameters includes pin-fin dimensions and shape of the resulting pin-fins. The optimization problem is solved under computational budget limitations and design constraints. A ‘drop’ like optimal design is obtained which has a lower pressure drop and higher Nu compared to the baseline.


2020 ◽  
pp. 1-11
Author(s):  
Shinjan Ghosh ◽  
Sudeepta Mondal ◽  
Erik Fernandez ◽  
Jayanta S. Kapat ◽  
Asok Roy

Author(s):  
Zhuo Cui

This paper presents the effects of heat dissipation performance of pin fins with different heat sink structures. The heat dissipation performance of two types of pin fin arrays heat sink are compared through measuring their heat resistance and the average Nusselt number in different cooling water flow. The temperature of cpu chip is monitored to determine the temperature is in the normal range of working temperature. The cooling water flow is in the range of 0.02L/s to 0.15L/s. It’s found that the increase of pin fins in the corner region effectively reduce the temperature of heat sink and cpu chip. The new type of pin fin arrays increase convection heat transfer coefficient and reduce heat resistance of heat sink.


Author(s):  
F. E. Ames ◽  
L. A. Dvorak

The objective of this research has been to experimentally investigate the fluid dynamics of pin fin arrays in order to clarify the physics of heat transfer enhancement and uncover problems in conventional turbulence models. The fluid dynamics of a staggered pin fin array have been studied using hot wire anemometry with both single and x-wire probes at array Reynolds numbers of 3000; 10,000; and 30,000. Velocity distributions off the endwall and pin surface have been acquired and analyzed to investigate turbulent transport in pin fin arrays. Well resolved 3-D calculations have been performed using a commercial code with conventional two-equation turbulence models. Predictive comparisons have been made with fluid dynamic data. In early rows where turbulence is low, the strength of shedding increases dramatically with increasing in Reynolds numbers. The laminar velocity profiles off the surface of pins show evidence of unsteady separation in early rows. In row three and beyond laminar boundary layers off pins are quite similar. Velocity profiles off endwalls are strongly affected by the proximity of pins and turbulent transport. At the low Reynolds numbers, the turbulent transport and acceleration keep boundary layers thin. Endwall boundary layers at higher Reynolds numbers exhibit very high levels of skin friction enhancement. Well resolved 3-D steady calculations were made with several two-equation turbulence models and compared with experimental fluid mechanic and heat transfer data. The quality of the predictive comparison was substantially affected by the turbulence model and near wall methodology.


2018 ◽  
Vol 99 ◽  
pp. 190-199 ◽  
Author(s):  
Taiho Yeom ◽  
Terrence Simon ◽  
Min Zhang ◽  
Youmin Yu ◽  
Tianhong Cui

Sign in / Sign up

Export Citation Format

Share Document