Forced Response Variation of a Compressor Utilizing Blade Tip Timing, Strain Gages, and As-Manufactured Finite Element Models

2021 ◽  
Author(s):  
Daniel Gillaugh ◽  
Alex Kaszynski ◽  
Timothy Janczewski ◽  
Jeffrey Brown ◽  
Chase Nessler ◽  
...  
Author(s):  
Daniel Gillaugh ◽  
Timothy Janczewski ◽  
Alex Kaszynski ◽  
Jeffrey Brown ◽  
Joseph Beck ◽  
...  

Abstract The dynamic response of turbine engine components varies widely due to manufacturing deviations in the blades known as mistuning. This dynamic variation is investigated using a single stage compressor experimentally using both blade tip timing (BTT) and strain gage (SG) measurements and using as-manufactured finite element models (AMMs) on a 1st bend mode. Operational BTT and SG safety limits were generated using both averaged and AMM models via Goodman material properties. The predicted individual blade stress/deflection (S/D) ratios and strain gage ratios for this mode will be compared to the average finite element counterparts. Additionally, the correlation between BTT and SG's will be presented. This correlation will be performed using two approaches: blade maximum stress comparisons and measured response compared to the sensors safety limits. It will be shown that accounting for geometry with AMMs produce more accurate strain gage to BTT correlation compared to average models. An experimental model updating procedure is developed to increase the strain gage to BTT correlation by optimizing the location the BTT optical spot probes measure on the blade chord. Implementing this procedure using as-manufactured models are able to improve strain gage to BTT correlation.


Author(s):  
Daniel L. Gillaugh ◽  
Timothy J. Janczewski ◽  
Alexander A. Kaszynski ◽  
Jeffrey M. Brown ◽  
Joseph A. Beck ◽  
...  

Abstract The dynamic response of turbine engine components varies widely due to manufacturing deviations in the blades known as mistuning. This dynamic variation is investigated using a single stage compressor experimentally using both blade tip timing (BTT) and strain gage (SG) measurements and using as-manufactured finite element models (AMMs) on a 1st bend mode. Operational BTT and SG safety limits were generated using both averaged and AMM models via Goodman material properties. The predicted individual blade stress/deflection (S/D) ratios and strain gage ratios for this mode will be compared to the average finite element counterparts. Additionally, the correlation between BTT and SG’s will be presented. This correlation will be performed using two approaches: blade maximum stress comparisons and measured response compared to the sensors safety limits. It will be shown that accounting for geometry with AMMs produce more accurate strain gage to BTT correlation compared to average models. An experimental model updating procedure is developed to increase the strain gage to BTT correlation by optimizing the location the BTT optical spot probes measure on the blade chord. Implementing this procedure using as-manufactured models are able to improve strain gage to BTT correlation.


2002 ◽  
Vol 39 (04) ◽  
pp. 223-231
Author(s):  
J. C. Roberts ◽  
M. P. Boyle ◽  
P. D. Wienhold ◽  
E. E. Ward

Rectangular orthotropic glass fiber reinforced plastic sandwich panels were tested under uniform out-of-plane pressure and the strains and deflections were compared with those from finite-element models of the panels. The panels, with 0.32 cm (0.125 in.) face sheets and a 1.27 cm (0.5 in.)core of either balsa or linear polyvinylchloride foam, were tested in two sizes: 183 × 92 cm (72 × 36 in.) and121 × 92 cm (48 × 36 in.). The sandwich panels were fabricated using the vacuum-assisted resin transfer molding technique. The two short edges of the sandwich panels were clamped, while the two long edges were simply supported. Uniform external pressure was applied using two large water inflatable bladders in series. The deflection and strains were measured using dial gages and strain gages placed at quarter and half points on the surface of the panels. Measurements were made up to a maximum out-of-plane pressure of 0.1 MPa (15psi). A total of six balsa core and six foam core panels were tested. Finite-element models were constructed for the 183-cm-long panel and the121-cm-long panel. Correlation between numerical and experimental strains to deflect the sandwich panel was much better on the top (tensile) side of the panels than on the bottom (compressive)side of the panels, regardless of panel aspect ratio or core material. All sandwich panels exhibited the same compressive strain reversal behavior on the compressive side of the panel. This phenomenon was thought to be due to nonlinearly induced micro-buckling under the strain gages, buckling of the woven fabric, or micro-cracking within the resin.


Author(s):  
Shobhit Jain ◽  
George Haller

AbstractInvariant manifolds are important constructs for the quantitative and qualitative understanding of nonlinear phenomena in dynamical systems. In nonlinear damped mechanical systems, for instance, spectral submanifolds have emerged as useful tools for the computation of forced response curves, backbone curves, detached resonance curves (isolas) via exact reduced-order models. For conservative nonlinear mechanical systems, Lyapunov subcenter manifolds and their reduced dynamics provide a way to identify nonlinear amplitude–frequency relationships in the form of conservative backbone curves. Despite these powerful predictions offered by invariant manifolds, their use has largely been limited to low-dimensional academic examples. This is because several challenges render their computation unfeasible for realistic engineering structures described by finite element models. In this work, we address these computational challenges and develop methods for computing invariant manifolds and their reduced dynamics in very high-dimensional nonlinear systems arising from spatial discretization of the governing partial differential equations. We illustrate our computational algorithms on finite element models of mechanical structures that range from a simple beam containing tens of degrees of freedom to an aircraft wing containing more than a hundred–thousand degrees of freedom.


2005 ◽  
Vol 127 (1) ◽  
pp. 128-136 ◽  
Author(s):  
E. P. Petrov ◽  
D. J. Ewins

An efficient method for analysis of nonlinear vibrations of mistuned bladed disk assemblies has been developed. This development has facilitated the use of large-scale finite element models for realistic bladed disks, used hitherto in analysis of linear vibration, to be extended for the analysis of nonlinear multiharmonic vibration. The new method is based on a technique for the exact condensation of nonlinear finite element models of mistuned bladed disks. The model condensation allows the size of the nonlinear equations to be reduced to the number of degrees of freedom where nonlinear interaction forces are applied. The analysis of nonlinear forced response for simplified and realistic models of mistuned bladed disks has been performed. For a practical high-pressure bladed turbine disk, several types of nonlinear forced response have been considered, including mistuning by (i) scatter of underplatform dampers, (ii) shroud gap scatter, and (iii) blade frequency scatter in the presence of nonlinear shroud interactions.


Author(s):  
E. P. Petrov ◽  
D. J. Ewins

An efficient method for analysis of nonlinear vibrations of mistuned bladed disc assemblies has been developed. As a result, this development has facilitated the use of large-scale finite element models for realistic bladed discs, as used hitherto in analysis of linear vibration, to be extended for the analysis of nonlinear multiharmonic vibration. The new method is based on a technique for the exact condensation of nonlinear finite element models of mistuned bladed discs. The model condensation allows the size of the nonlinear equations to be reduced to the number of degrees of freedom where nonlinear interation forces are applied. The analysis of nonlinear forced response for simplified and realistic models of mistuned bladed discs has been performed. For a practical high-pressure bladed turbine disc, several types of nonlinear forced response have been considered including: (i) mistuning by scatter of underplatform dampers; (ii) mistuning by shroud gap scatter; (iii) mistuning by blade frequency scatter in the presence of nonlinear shroud interactions.


Author(s):  
A. H. Mohamad ◽  
J. Ravoux ◽  
G. Jacquet-Richardet

Abstract The shape and the frequency of excitation, induced by distributed pressure fields, have both a major influence on the associated response of bladed disks. The way those pressure fields are considered by finite element models have then to be as accurate as possible. In this paper, an analytical model, adapted to the prediction of the forced response of clamped-free circular plates, due to distributed pressure fields, is first derived. This model is considered as a reference in order to assess the effectiveness of different finite element modeling.


1988 ◽  
Vol 16 (1) ◽  
pp. 18-43 ◽  
Author(s):  
J. T. Oden ◽  
T. L. Lin ◽  
J. M. Bass

Abstract Mathematical models of finite deformation of a rolling viscoelastic cylinder in contact with a rough foundation are developed in preparation for a general model for rolling tires. Variational principles and finite element models are derived. Numerical results are obtained for a variety of cases, including that of a pure elastic rubber cylinder, a viscoelastic cylinder, the development of standing waves, and frictional effects.


Sign in / Sign up

Export Citation Format

Share Document