Validation of a Directed Energy Ignition System on a Large-Bore Single Cylinder Gas-Fueled Engine

2021 ◽  
Author(s):  
Forrest Pommier ◽  
David Lepley ◽  
Greg Beshouri ◽  
Timothy Jacobs
2021 ◽  
Author(s):  
Forrest Pommier ◽  
David Lepley ◽  
Greg Beshouri ◽  
Timothy Jacobs

Author(s):  
Forrest Pommier ◽  
David Lepley ◽  
Greg Beshouri ◽  
Timothy Jacobs

Abstract The natural gas industry has seen a considerable increase in production recently as the world seeks out new sources of economical, reliable, and more environmentally friendly energy. Moving this natural gas requires a complex network of pipelines and compressors, including reciprocating engines, to keep the gas moving. Many of these engines were designed more than 40 years ago and must be retrofit with modern technologies to improve their performance while simultaneously reducing the harmful emissions that they produce. In this study a directed energy ignition system is tested on a two-stroke, single cylinder, natural gas-fired engine. Stability and emissions will be observed throughout a range of spark waveforms for a single speed and load that enables the most fuel-lean operation of the engine. Improving the combustion process of the legacy pipeline engines is a substantial area of opportunity for reducing emissions output. One means of doing so is by improving an engines ability to operate at leaner conditions. To accomplish this, an ignition system needs to be able to send more energy to the spark plug in a controlled manner than a tradition capacitive-discharge ignition system. Controlling the energy is accomplished by optimizing the structure of the waveform or “profile” for each engine design. With this particular directed energy ignition system, spark profiles are able to be configured by changing the duration and amount of current sent to the spark plug. This study investigates a single operating speed and load for 9 different spark energy configurations. Engine operation at these test conditions will allow for emissions and engine performance data, using directed energy, to be analyzed in contrast to capacitive-discharge ignition.


Author(s):  
Steven W. Richardson ◽  
Michael H. McMillian ◽  
Steven D. Woodruff ◽  
Todd Worstell ◽  
Dustin L. McIntyre

Charge dilution, due to the reduced combustion temperatures that it brings about, has long been proven as effective means of reducing Nitrogen Oxides (NOx) emissions in reciprocating engines. The extent of this dilution is practically bounded on the lean side of stoichiometric conditions by engine misfire or the point at which the combustion process is no longer sufficiently reliable to sustain engine operation within some specified limit. Extending this misfire limit of an engine becomes a worth while goal as it brings about further reductions in NOx emissions. Much work has been dedicated to reaching this end and several techniques have proven viable in natural gas fueled engines. This work explores potential synergies between two proven techniques for NOx reductions in lean-burn natural gas fueled engines, hydrogen enrichment of the natural gas fuel and application of laser spark ignition. Independently both techniques have been shown to provide significant NOx emissions reductions through lean limit extension in spark ignited gaseous fueled reciprocating engines [1–11, 13–15]. Here hydrogen is blended with natural gas at five different levels ranging from 0% to 40% by volume in a single cylinder engine. The mixtures are fired using a conventional spark plug based ignition system and then again with an open beam path laser induced breakdown spark ignition system. NOx emissions measurements were made at different levels including misfire conditions for each level of hydrogen enrichment with both ignition systems. Data are presented and the emissions and engine performance of two configurations are compared to determine realizable benefits that arise from combining the two techniques.


2004 ◽  
Author(s):  
Michael McMillian ◽  
Steven Richardson ◽  
Steven D. Woodruff ◽  
Dustin McIntyre

2016 ◽  
Author(s):  
Roberto Berlini R da Costa ◽  
Carlos Alberto Gomes ◽  
Fabricio José Pacheco Pujatti ◽  
Alysson Fernandes Teixeira ◽  
Fernando Antonio Rodrigues Filho

1995 ◽  
Vol 117 (4) ◽  
pp. 810-819
Author(s):  
B. M. Chrisman ◽  
P. D. Freen

Development of the in-line versions of the 2400G Series of spark ignited, gas-fueled engines has been in process for the last six years. The main objective of this program is to produce a new series of 1200 rpm gas engines having a continuous duty rating of 200 bhp per cylinder. This paper deals with the highlights of the engine development program from the initial concept stage through the operation of prototype engines at customer sites. Development procedures are described that led to substantial advances in performance improvement and exhaust emissions control. A focal point of this work is the combustion analysis, which was conducted through computer simulation and through the operation of a gas-fueled, single-cylinder test facility. This preliminary analysis resulted in the definition of the basic configurations for the prechamber and the main combustion chamber. The applicability of the modeling and the single cylinder test work to the six and eight cylinder engines is evaluated in this paper. Development of appropriate manifolding, turbocharging, and cylinder balance was a critical part of the multicylinder phase of this program. Another key issue was the design and testing of the electronic feedback control system that assures continuous operation at conditions that produce optimized fuel economy and exhaust emissions. The satisfactory operation of the six and eight cylinder 2400G prototype engines in the field is based on the foundation of the developmental work described in this paper.


Sign in / Sign up

Export Citation Format

Share Document