Mechanical Component\u2019s Dimension Design With Required Reliability by the Monte Carlo Method

2021 ◽  
Author(s):  
Xiaobin Le
Author(s):  
Xiaobin Le

Abstract Since the main design parameters in a mechanical component design have some uncertainties and should be treated as random variables, the reliability of a component is a better measurement of the safe status of a component. A component will not be reliable unless it is designed with specified reliability. Therefore, the mechanical component design should be a dimension design with the required reliability. The fundamental concept of the Monte Carlo method is to plug-in randomly generated numerical values into the governing equation of a design problem to get a trial result. The Monte Carlo method has become so powerful numerical simulation approach in almost every field such as optimization, numerical integration, and reliability calculation. But for reliability engineering, most of the literature shows how to use the Monte Carlo method to calculate the reliability of a component. This paper will propose the modified Monte Carlo method to determine a component dimension with required reliability. This paper first discusses and establishes typical limit state functions of a component under static loads. These limit state functions cover two failure modes including the failure mode due to strength and the failure mode due to excessive deformation. Then, the procedure and the flowchart of the modified Monte Carlo method will be explained in detail. The provided procedure and the flowchart are easy to be followed for compiling a MATLAB program to conduct a dimension design with required reliability. Two examples will show how to implement the proposed new method for conducting a dimension design with required reliability.


2020 ◽  
Vol 2020 (4) ◽  
pp. 25-32
Author(s):  
Viktor Zheltov ◽  
Viktor Chembaev

The article has considered the calculation of the unified glare rating (UGR) based on the luminance spatial-angular distribution (LSAD). The method of local estimations of the Monte Carlo method is proposed as a method for modeling LSAD. On the basis of LSAD, it becomes possible to evaluate the quality of lighting by many criteria, including the generally accepted UGR. UGR allows preliminary assessment of the level of comfort for performing a visual task in a lighting system. A new method of "pixel-by-pixel" calculation of UGR based on LSAD is proposed.


Author(s):  
V.A. Mironov ◽  
S.A. Peretokin ◽  
K.V. Simonov

The article is a continuation of the software research to perform probabilistic seismic hazard analysis (PSHA) as one of the main stages in engineering seismic surveys. The article provides an overview of modern software for PSHA based on the Monte Carlo method, describes in detail the work of foreign programs OpenQuake Engine and EqHaz. A test calculation of seismic hazard was carried out to compare the functionality of domestic and foreign software.


2019 ◽  
Vol 20 (12) ◽  
pp. 1151-1157 ◽  
Author(s):  
Alla P. Toropova ◽  
Andrey A. Toropov

Prediction of physicochemical and biochemical behavior of peptides is an important and attractive task of the modern natural sciences, since these substances have a key role in life processes. The Monte Carlo technique is a possible way to solve the above task. The Monte Carlo method is a tool with different applications relative to the study of peptides: (i) analysis of the 3D configurations (conformers); (ii) establishment of quantitative structure – property / activity relationships (QSPRs/QSARs); and (iii) development of databases on the biopolymers. Current ideas related to application of the Monte Carlo technique for studying peptides and biopolymers have been discussed in this review.


1999 ◽  
Vol 72 (1) ◽  
pp. 68-72
Author(s):  
M. Yu. Al’es ◽  
A. I. Varnavskii ◽  
S. P. Kopysov

Sign in / Sign up

Export Citation Format

Share Document