Heat Transfer and Pressure Drop of Laminar Flow in Horizontal Tubes With/Without Longitudinal Inserts

1999 ◽  
Vol 122 (3) ◽  
pp. 465-475 ◽  
Author(s):  
S.-S. Hsieh ◽  
I.-W. Huang

Heat transfer and pressure drop characteristics of water flow in horizontal tubes with/without longitudinal inserts used as a heat exchanger tubing was experimentally studied. Testing was performed on bare tubes and tubes with square and rectangular as well as crossed-strip inserts with aspect ratios AR=1 and 4 and varied ratios of inlet mixed mean temperature to wall temperature of 0.88 to 0.97. The Reynolds number ranged from approximately 250 to 1750 for flow visualization and from 1700 to 4000 for the pressure drop and heat transfer measurements. Flow visualization, using a dye injection method, revealed a highly complex flow pattern including a secondary flow formed in the cross section for crossed-strip inserts. The thermal entrance length was found and correlated in terms of Re for this type of inserted tubes. The enhancement of heat transfer as compared to a conventional bare tube at the same Reynolds number based on the hydraulic diameter was found to be about a factor of 16 at Re⩽4000, while the friction factor rise was only about a factor of 4.5 at Re⩽4000. [S0022-1481(00)01303-7]

2015 ◽  
Vol 813-814 ◽  
pp. 685-689
Author(s):  
M. Vijay Anand Marimuthu ◽  
B. Venkatraman ◽  
S. Kandhasamy

This paper investigates the performance and characteristics of saw tooth shape micro channel in the theoretical level. If the conduct area of the nano fluid increases the heat transfer also increases. The performance curve has drawn Reynolds number against nusselt number, heat transfer co efficient. Pressure drop plays an important role in this device. If pressure drop is high the heat transfer increases. The result in this experiment shows clearly that the heat transfer is optimized.


1992 ◽  
Vol 114 (3) ◽  
pp. 558-564 ◽  
Author(s):  
D. Kundu ◽  
A. Haji-Sheikh ◽  
D. Y. S. Lou

The heat transfer coefficient and pressure drop are measured for laminar and turbulent incompressible flow over an in-line cylinder array (eight copper tubes) between two parallel plates. Data are given using two different aspect ratios for the intermediate range of the Reynolds number between 220 to 2800. A criterion is defined for flow transition from laminar to turbulent. The pressure and heat transfer data are compared to numerically computed data obtained for laminar flow and the results exhibit reasonably good agreement.


2012 ◽  
Vol 326-328 ◽  
pp. 341-347 ◽  
Author(s):  
Prashant Kumar ◽  
Frédéric Topin ◽  
Lounes Tadrist

Heat transfer phenomena are numerically studied with standing waves inside the tubes for stationary and moving sinusoidal wavy walls. Effects of spatial wavelengths (= 1/2, 2/3, 1 and 2 mm), Reynolds number (1-120), frequency (0-60 Hz) and amplitude (1%-20% of tube diameter, d) on heat transfer and pressure drop are studied. For stationary wall case, upon increasing the number of sine waves, the Nusselt number starts to decrease; the associated pressure drop and friction factor increases very rapidly at highest value of amplitude. Heat transfer enhancement characteristics on a moving sinusoidal wavy-walled tube with imposed frequency (0


1982 ◽  
Vol 104 (3) ◽  
pp. 410-416 ◽  
Author(s):  
J. E. O’Brien ◽  
E. M. Sparrow

Experiments were performed to determine forced convection heat-transfer coefficients and friction factors for flow in a corrugated duct. The corrugation angle was 30 deg and the interwall spacing was equal to the corrugation height. The Reynolds number, based on the duct hydraulic diameter, ranged from 1500 to 25,000, and the Prandtl number ranged from 4 to 8 (water). Flow visualization, using the oil-lampblack technique, revealed a highly complex flow pattern, including large zones of recirculation adjacent to the rearward-facing corrugation facets. Nusselt numbers in the periodic fully developed regime, when correlated, resulted in a Reynolds-number dependence of Re0.614 and a Prandtl-number dependence of Pr0.34. The enhancement of heat transfer as compared to a conventional parallel-plate channel was about a factor of 2.5. Friction factors obtained from measured axial pressure distributions were virtually independent of the Reynolds number and equal to 0.57, a value appreciably greater than that for unidirectional duct flows.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Felipe A. S. Silva ◽  
Luis Júnior ◽  
José Silva ◽  
Sandilya Kambampati ◽  
Leandro Salviano

AbstractSolar Water Heater (SWH) has low efficiency and the performance of this type of device needs to be improved to provide useful and ecological sources of energy. The passive techniques of augmentation heat transfer are an effective strategy to increase the convective heat transfer coefficient without external equipment. In this way, recent investigations have been done to study the potential applications of different inserts including wire coils, vortex generators, and twisted tapes for several solar thermal applications. However, few researchers have investigated inserts in SWH which is useful in many sectors where the working fluid operates at moderate temperatures. The longitudinal vortex generators (LVG) have been applied to promote heat transfer enhancement with a low/moderate pressure drop penalty. Therefore, the present work investigated optimal geometric parameters of LVG to enhance the heat transfer for a SWH at low Reynolds number and laminar flow, using a 3D periodical numerical simulation based on the Finite Volume Method coupled to the Genetic Algorithm optimization method (NSGA-II). The LVG was stamped over a flat plate inserted inside a smooth tube operating under a typical residential application corresponding to Reynolds numbers of 300, 600, and 900. The geometric parameters of LGV were submitted to the optimization procedure which can find traditional LVG such as rectangular-winglet and delta-winglet or a mix of them. The results showed that the application of LGVs to enhance heat transfer is an effective passive technique. The different optimal shapes of the LVG for all Reynolds numbers evaluated improved more than 50% of heat transfer. The highest augmentation heat transfer of 62% is found for the Reynolds number 900. However, the best thermo-hydraulic efficiency value is found for the Reynolds number of 600 in which the heat transfer intensification represents 55% of the pressure drop penalty.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ing Jiat Kendrick Wong ◽  
Ngieng Tze Angnes Tiong

AbstractThis paper presents the numerical study of thermal performance factor of Al2O3-Cu/water hybrid nanofluid in circular and non-circular ducts (square and rectangular). Turbulent regime is studied with the Reynolds number ranges from 10000 to 100000. The heat transfer performance and flow behaviour of hybrid nanofluid are investigated, considering the nanofluid volume concentration between 0.1 and 2%. The thermal performance factor of hybrid nanofluid is evaluated in terms of performance evaluation criteria (PEC). This present numerical results are successfully validated with the data from the literature. The results indicate that the heat transfer coefficient and Nusselt number of Al2O3-Cu/water hybrid nanofluid are higher than those of Al2O3/water nanofluid and pure water. However, this heat transfer enhancement is achieved at the expense of an increased pressure drop. The heat transfer coefficient of 2% hybrid nanofluid is approximately 58.6% larger than the value of pure water at the Reynolds number of 10000. For the same concentration and Reynolds number, the pressure drop of hybrid nanofluid is 4.79 times higher than the pressure drop of water. The heat transfer performance is the best in the circular pipe compared to the non-circular ducts, but its pressure drop increment is also the largest. The hybrid nanofluid helps to improve the problem of low heat transfer characteristic in the non-circular ducts. In overall, the hybrid nanofluid flow in circular and non-circular ducts are reported to possess better thermal performance factor than that of water. The maximum attainable PEC is obtained by 2% hybrid nanofluid in the square duct at the Reynolds Number of 60000. This study can help to determine which geometry is efficient for the heat transfer application of hybrid nanofluid.


Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
C. Neil Jordan ◽  
Lesley M. Wright

An alternative to ribs for internal heat transfer enhancement of gas turbine airfoils is dimpled depressions. Relative to ribs, dimples incur a reduced pressure drop, which can increase the overall thermal performance of the channel. This experimental investigation measures detailed Nusselt number ratio distributions obtained from an array of V-shaped dimples (δ/D = 0.30). Although the V-shaped dimple array is derived from a traditional hemispherical dimple array, the V-shaped dimples are arranged in an in-line pattern. The resulting spacing of the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. A single wide wall of a rectangular channel (AR = 3:1) is lined with V-shaped dimples. The channel Reynolds number ranges from 10,000–40,000. Detailed Nusselt number ratios are obtained using both a transient liquid crystal technique and a newly developed transient temperature sensitive paint (TSP) technique. Therefore, the TSP technique is not only validated against a baseline geometry (smooth channel), but it is also validated against a more established technique. Measurements indicate that the proposed V-shaped dimple design is a promising alternative to traditional ribs or hemispherical dimples. At lower Reynolds numbers, the V-shaped dimples display heat transfer and friction behavior similar to traditional dimples. However, as the Reynolds number increases to 30,000 and 40,000, secondary flows developed in the V-shaped concavities further enhance the heat transfer from the dimpled surface (similar to angled and V-shaped rib induced secondary flows). This additional enhancement is obtained with only a marginal increase in the pressure drop. Therefore, as the Reynolds number within the channel increases, the thermal performance also increases. While this trend has been confirmed with both the transient TSP and liquid crystal techniques, TSP is shown to have limited capabilities when acquiring highly resolved detailed heat transfer coefficient distributions.


Sign in / Sign up

Export Citation Format

Share Document