Jet Impingement Boiling From a Circular Free-Surface Jet During Quenching: Part 1—Single-Phase Jet

2001 ◽  
Vol 123 (5) ◽  
pp. 901-910 ◽  
Author(s):  
David E. Hall ◽  
Frank P. Incropera ◽  
Raymond Viskanta

This paper reports results from an experimental study of boiling heat transfer during quenching of a cylindrical copper disk by a subcooled, circular, free-surface water jet. The disk was heated to approximately 650°C, and as quenching occurred, transient temperature measurements were taken at discrete locations near the surface and applied as boundary conditions in a conduction model to deduce transient heat flux distributions at the surface. Results are presented in the form of heat flux distributions and boiling curves for radial locations varying from the stagnation point to ten nozzle diameters for jet velocities between 2.0 and 4.0 m/s 11,300⩽Red⩽22,600. Data for nucleate boiling in the stagnation region and spatial distributions of maximum heat flux are presented and are in good agreement with correlations developed from steady-state experiments. Spatial distributions of minimum film boiling temperatures and heat fluxes are also reported and reveal a fundamental dependence on jet deflection and streamwise location. A companion paper (Hall et al., 2001) describes single-phase and boiling heat transfer measurements from a two-phase (water-air), free-surface, circular jet produced by injecting air bubbles into the jet upstream of the nozzle exit.

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Sang Gun Lee ◽  
Jin Sub Kim ◽  
Dong Hwan Shin ◽  
Jungho Lee

The effect of staggered-array water impinging jets on boiling heat transfer was investigated by a simultaneous measurement between boiling visualization and heat transfer characteristics. The boiling phenomena of staggered-array impinging jets on hot steel plate were visualized by 4K UHD video camera. The surface temperature and heat flux on hot steel plate was determined by solving 2-D inverse heat conduction problem, which was measured by the flat-plate heat flux gauge. The experiment was made at jet Reynolds number of Re = 5,000 and the jet-to-jet distance of staggered-array jets of S/Dn = 10. Complex flow interaction of staggered-array impinging jets exhibited hexagonal flow pattern like as honey-comb. The calculated surface heat transfer profiles show a good agreement with the corresponding boiling visualization. The peak of heat flux accords with the location which nucleate boiling is occurred at. In early stage, the positions of maximum heat flux locate at the stagnation point of each jet as the relatively low surface temperature is shown at their positions. At the elapsed time of 10 s, the flat shape of heat flux profile is formed in the hexagonal area where the interacting flow uniformly cools down the wetted surface. After that, the wetted area continuously enlarges with time and the maximum heat flux is observed at its peripheral. These results point out that the flow interaction of staggered-array jets effectively cools down the closer area around jets and also show an expansion of nucleate boiling and suppression of film boiling during water jet cooling on hot steel plate. [This work was supported by the KETEP grant funded by the Ministry of Trade, Industry & Energy, Korea (Grant No. 20142010102910).]


2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Joo Han Kim ◽  
Ajay Gurung ◽  
Miguel Amaya ◽  
Sang Muk Kwark ◽  
Seung M. You

The present research is an experimental study for the enhancement of boiling heat transfer using microporous coatings. Two types of coatings are investigated: one that is bonded using epoxy and the other by soldering. Effects on pool boiling performance were investigated, of different metal particle sizes of the epoxy-based coating, on R-123 refrigerants, and on water. All boiling tests were performed with 1 cm × 1 cm test heaters in the horizontal, upward-facing orientation in saturated conditions at atmospheric pressure and under increasing heat flux. The surface enhanced by the epoxy-based microporous coatings significantly augmented both nucleate boiling heat transfer coefficients and critical heat flux (CHF) of R-123 relative to those of a plain surface. However, for water, with the same microporous coating, boiling performance did not improve as much, and thermal resistance of the epoxy component limited the maximum heat flux that could be applied. Therefore, for water, to seek improved performance, the solder-based microporous coating was applied. This thermally conductive microporous coating, TCMC, greatly enhanced the boiling performance of water relative to the plain surface, increasing the heat transfer coefficient up to ∼5.6 times, and doubling the CHF.


2005 ◽  
Vol 128 (7) ◽  
pp. 726-729 ◽  
Author(s):  
Zhenhua Liu ◽  
Yuhao Qiu

The nucleate boiling heat transfer characteristics of a round water jet impingement in a flat stagnation zone on the superhydrophilic surface were experimentally investigated. The superhydrophilic heat transfer surface was formed by a TiO2 coating process. The experimental results were compared with those on the common metal surface. In particular, the quantificational effects of the flow conditions, heating conditions, and the coating methods on the critical heat flux (CHF) were systemically investigated. The experimental data showed that the nucleate boiling heat transfer characteristics on the superhydrophilic surface are significantly different from those on the common metal surface. The CHF of boiling on the superhydrophilic surface is greatly increased by decreasing of the solid-liquid contact angle.


Author(s):  
Ahmed M. T. Omar ◽  
M. S. Hamed ◽  
M. Shoukri

Liquid jet impingement is a very effective way of cooling of simple and complicated geometry objects. The attainable cooling rate is radically enhanced when using liquids as coolant due to the possibility of having boiling to occur during the impingement process. Bubble activity on the surface and the resulted mixing with the fluid bulk produces an additional factor of enhancement which at some levels of surface temperature dominates other convective mechanism due to the coolant flow perpendicular or parallel to the surface. The efficient nucleate boiling heat transfer regime can be divided into: partial nucleate boiling and fully developed nucleate boiling. The heat transfer capacity of each and the range of surface temperature over which each of these two boiling regimes up to the critical heat flux (CHF) are experimentally investigated in this research for different coolant temperature and velocity. For this purpose, single planar jet is used to provide the cooling medium of a flat surface that is being heated steadily. The boiling surface temperature was thus controlled by a feed back computer program to allow for steady state operation. So, at each level of boiling surface temperature observation of boiling mode and heat transfer mechanisms was elongated and verified. The experiments were conducted using degassed water jet velocity range between 0.75 and 1.7 m/s and degree of sub-cooling range from 10 to 28 °C at atmospheric pressure. The variation of the heat flux with those factors at different surface superheat up to the CHF point is presented. A physical interpretation is introduced to explain the effects of the input parameters on the heat transfer changes in these regimes.


2001 ◽  
Vol 123 (5) ◽  
pp. 911-917 ◽  
Author(s):  
David E. Hall ◽  
Frank P. Incropera ◽  
Raymond Viskanta

A proposed technique for controlling jet impingement boiling heat transfer involves injection of gas into the liquid jet. This paper reports results from an experimental study of boiling heat transfer during quenching of a cylindrical copper specimen, initially at a uniform temperature exceeding the temperature corresponding to maximum heat flux, by a two-phase (water-air), circular, free-surface jet. The second phase is introduced as small bubbles into the jet upstream of the nozzle exit. Data are presented for single-phase convective heat transfer at the stagnation point, as well as in the form of boiling curves, maximum heat fluxes, and minimum film boiling temperatures at locations extending from the stagnation point to a radius of ten nozzle diameters. For void fractions ranging from 0.0 to 0.4 and liquid-only velocities between 2.0 and 4.0 m/s 11,300⩽Red,fo⩽22,600, several significant effects are associated with introduction of the gas bubbles into the jet. As well as enhancing single-phase convective heat transfer by up to a factor of 2.1 in the stagnation region, addition of the bubbles increases the wall superheat in nucleate boiling and eliminates the temperature excursion associated with cessation of boiling. The maximum heat flux is unaffected by changes in the void fraction, while minimum film boiling temperatures increase and film boiling heat transfer decreases with increasing void fraction. A companion paper (Hall et al., 2001) details corresponding results from the single-phase jet.


Author(s):  
Muhamad Zuhairi Sulaiman ◽  
Masahiro Takamura ◽  
Kazuki Nakahashi ◽  
Tomio Okawa

Boiling heat transfer (BHT) and critical heat flux (CHF) performance were experimentally studied for saturated pool boiling of water-based nanofluids. In present experimental works, copper heaters of 20 mm diameter with titanium-oxide (TiO2) nanocoated surface were produced in pool boiling of nanofluid. Experiments were performed in both upward and downward facing nanofluid coated heater surface. TiO2 nanoparticle was used with concentration ranging from 0.004 until 0.4 kg/m3 and boiling time of tb = 1, 3, 10, 20, 40, and 60 mins. Distilled water was used to observed BHT and CHF performance of different nanofluids boiling time and concentration configurations. Nucleate boiling heat transfer observed to deteriorate in upward facing heater, however; in contrast effect of enhancement for downward. Maximum enhancements of CHF for upward- and downward-facing heater are 2.1 and 1.9 times, respectively. Reduction of mean contact angle demonstrate enhancement on the critical heat flux for both upward-facing and downward-facing heater configuration. However, nucleate boiling heat transfer shows inconsistency in similar concentration with sequence of boiling time. For both downward- and upward-facing nanocoated heater's BHT and CHF, the optimum configuration denotes by C = 400 kg/m3 with tb = 1 min which shows the best increment of boiling curve trend with lowest wall superheat ΔT = 25 K and critical heat flux enhancement of 2.02 times.


1999 ◽  
Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Manabu Mochizuki

Abstract The effect of solid particle introduction on subcooled-forced flow boiling heat transfer and a critical heat flux was examined experimentally. In the experiment, glass beads of 0.6 mm diameter were mixed in subcooled water. Experiments were conducted in a range of the subcooling of 40 K, a velocity of 0.17–6.7 m/s, a volumetric particle ratio of 0–17%. When particles were introduced, the growth of a superheated liquid layer near a heat trasnsfer surface seemed to be suppressed and the onset of nucleate boiling was delayed. The particles promoted the condensation of bubbles on the heat transfer surface, which shifted the initiation of a net vapor generation to a high heat flux region. Boiling heat trasnfer was augmented by the particle introduction. The suppression of the growth of the superheated liquid layer and the promotion of bubble condensation and dissipation by the particles seemed to contribute that heat transfer augmentation. The wall superheat at the critical heat flux was elevated by the particle introduction and the critical heat flux itself was also enhanced. However, the degree of the critical heat flux improvement was not drastic.


1996 ◽  
Vol 118 (1) ◽  
pp. 21-26 ◽  
Author(s):  
David Copeland

Experimental measurements of multiple nozzle submerged jet array impingement single-phase and boiling heat transfer were made using FC-72 and 1 cm square copper pin fin arrays, having equal width and spacing of 0.1 and 0.2 mm, with aspect ratios from 1 to 5. Arrays of 25 and 100 nozzles were used, with diameters of 0.25 to 1.0 mm providing nozzle area from 5 to 20 mm2 (5 to 20% of the heat source base area). Flow rates of 2.5 to 10 cm3/s (0.15 to 0.6 l/min) were studied, with nozzle velocities from 0.125 to 2 m/s. Single nozzles and smooth surfaces were also evaluated for comparison. Single-phase heat transfer coefficients (based on planform area) from 2.4 to 49.3 kW/m2 K were measured, while critical heat flux varied from 45 to 395 W/cm2. Correlations of the single-phase heat transfer coefficient and critical heat flux as functions of pin fin dimensions, number of nozzles, nozzle area and liquid flow rate are provided.


Author(s):  
Qingjun Cai ◽  
Avijit Bhunia ◽  
Yuan Zhao

Silicon is the major material in IC manufacture. It has high thermal conductivity and is compatible with precision micro-fabrication. It also has decent thermal expansion coefficient to most semiconductor materials. These characteristics make it an ideally underlying material for fabricating micro/mini heat pipes and their wick structures. In this paper, we focus our research investigations on high heat flux phase change capacity of the silicon wick structures. The experimental wick sample is composed of silicon pillars 320μm in height and 30 ∼ 100μm in diameter. In a stainless steel test chamber, synchronized visualizations and measurements are performed to crosscheck experimental phenomena and data. Using the mono-wick structure with large silicon pillar of 100μm in diameter, the phase change on the silicon wick structure reaches its maximum heat flux at 1,130W/cm2 over a 2mm×2mm heating area. The wick structure can fully utilize the wick pump capability to supply liquid from all 360° directions to the center heating area. In contrast, the large heating area and fine silicon pillars 10μm in diameter significantly reduces liquid transport capability and suppresses generation of nucleate boiling. As a result, phase change completely relies on evaporation, and the CHF of the wick structure is reduced to 180W/cm2. An analytical model based on high heat flux phase change of mono-porous wick structures indicates that heat transfer capability is subjected to the ratio between the wick particle radius and the heater dimensions, as well as vapor occupation ratio of the porous volume. In contrast, phase change heat transfer coefficients of the wick structures essentially reflect material properties of wick structure and mechanism of two-phase interactions within wick structures.


Sign in / Sign up

Export Citation Format

Share Document