scholarly journals Heat Transfer and Flow on the Blade Tip of a Gas Turbine Equipped With a Mean-Camberline Strip

2001 ◽  
Vol 123 (4) ◽  
pp. 704-708 ◽  
Author(s):  
A. A. Ameri

Experimental and computational studies have been performed to investigate the detailed distribution of convective heat transfer coefficients on the first-stage blade tip surface for a geometry typical of large power generation turbines (>100 MW). In a previous work the numerical heat transfer results for a sharp edge blade tip and a radiused blade tip were presented. More recently several other tip treatments have been considered for which the tip heat transfer has been measured and documented. This paper is concerned with the numerical prediction of the tip surface heat transfer for radiused blade tip equipped with mean-camberline strip (or “squealer” as it is often called). The heat transfer results are compared with the experimental results and discussed. The effectiveness of the mean-camberline strip in reducing the tip leakage and the tip heat transfer as compared to a radiused edge tip and sharp edge tip was studied. The calculations show that the sharp edge tip works best (among the cases considered) in reducing the tip leakage flow and the tip heat transfer.

Author(s):  
A. A. Ameri

Experimental and computational studies have been performed to investigate the detailed distribution of convective heat transfer coefficients on the first-stage blade tip surface for a geometry typical of large power generation turbines(>100MW). In a previous work the numerical heat transfer results for a sharp edge blade tip and a radiused blade tip were presented. More recently several other tip treatments have been considered for which the tip heat transfer has been measured and documented. This paper is concerned with the numerical prediction of the tip surface heat transfer for radiused blade tip equipped with mean-camberline strip (or “squealer” as it is often called). The heat transfer results are compared with the experimental results and discussed. The effectiveness of the mean-camberline strip in reducing the tip leakage and the tip heat transfer as compared to a radiused edge tip and sharp edge tip was studied. The calculations show that the sharp edge tip works best (among the cases considered) in reducing the tip leakage flow and the tip heat transfer.


1999 ◽  
Vol 122 (2) ◽  
pp. 272-277 ◽  
Author(s):  
A. A. Ameri ◽  
R. S. Bunker

A combined experimental and computational study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first-stage blade tip surface for a geometry typical of large power generation turbines (>100 MW). This paper is concerned with the numerical prediction of the tip surface heat transfer. Good comparison with the experimental measured distribution was achieved through accurate modeling of the most important features of the blade passage and heating arrangement as well as the details of experimental rig likely to affect the tip heat transfer. A sharp edge and a radiused edge tip was considered. The results using the radiused edge tip agreed better with the experimental data. This improved agreement was attributed to the absence of edge separation on the tip of the radiused edge blade. [S0889-504X(00)01802-X]


Author(s):  
A. A. Ameri ◽  
R. S. Bunker

A combined experimental and computational study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines (>100MW). This paper is concerned with the numerical prediction of the tip surface heat transfer. Good comparison with the experimental measured distribution was achieved through accurate modeling of the most important features of the blade passage and heating arrangement as well as the details of experimental rig likely to affect the tip heat transfer. A sharp edge and a radiused edge tip was considered. The results using the radiused edge tip agreed better with the experimental data. This improved agreement was attributed to the absence of edge separation on the tip of the radiused edge blade.


Author(s):  
Vikrant Saxena ◽  
Hasan Nasir ◽  
Srinath V. Ekkad

A comprehensive investigation of the effect of various tip sealing geometries is presented on the blade tip leakage flow and associated heat transfer of a scaled up HPT turbine blade in a low-speed wind tunnel facility. The linear cascade is made of four blades with the two corner blades acting as guides. The tip section of a HPT first stage rotor blade is used to fabricate the 2-D blade. The wind tunnel accommodates an 116° turn for the blade cascade. The mainstream Reynolds number based on the axial chord length at cascade exit is 4.83 × 105. The upstream wake effect is simulated with a spoked wheel wake generator placed upstream of the cascade. A turbulence grid placed even farther upstream generates the required free-stream turbulence of 4.8%. The center blade has a tip clearance gap of 1.5625% with respect to the blade span. Static pressure measurements are obtained on the blade surface and the shroud. The effect of crosswise trip strips to reduce leakage flow and associated heat transfer is investigated with strips placed along the leakage flow direction, against the leakage flow and along the chord. Cylindrical pin fins and pitch variation of strips over the tip surface are also investigated. Detailed heat transfer measurements are obtained using a steady state HSI-based liquid crystal technique. The effect of periodic unsteady wake effect is also investigated by varying the wake Strouhal number from 0. to 0.2, and to 0.4. Results show that the trip strips placed against the leakage flow produce the lowest heat transfer on the tips compared to all the other cases with a reduction between 10–15% compared to the plain tip. Results also show that the pitch of the strips has a small effect on the overall reduction. Cylindrical pins fins and strips along the leakage flow direction do not decrease the heat transfer coefficients and in some cases enhance the heat transfer coefficients by as much as 20%.


2004 ◽  
Vol 126 (1) ◽  
pp. 130-138 ◽  
Author(s):  
Vikrant Saxena ◽  
Hasan Nasir ◽  
Srinath V. Ekkad

A comprehensive investigation of the effect of various tip sealing geometries is presented on the blade tip leakage flow and associated heat transfer of a scaled up HPT turbine blade in a low-speed wind tunnel facility. The linear cascade is made of four blades with the two corner blades acting as guides. The tip section of a HPT first stage rotor blade is used to fabricate the two-dimensional blade. The wind tunnel accommodates an 116 deg turn for the blade cascade. The mainstream Reynolds number based on the axial chord length at cascade exit is 4.83×105. The upstream wake effect is simulated with a spoked wheel wake generator placed upstream of the cascade. A turbulence grid placed even farther upstream generates the required freestream turbulence of 4.8%. The center blade has a tip clearance gap of 1.5625% with respect to the blade span. Static pressure measurements are obtained on the blade surface and the shroud. The effect of crosswise trip strips to reduce leakage flow and associated heat transfer is investigated with strips placed along the leakage flow direction, against the leakage flow and along the chord. Cylindrical pin fins and pitch variation of strips over the tip surface are also investigated. Detailed heat transfer measurements are obtained using a steady-state HSI-based liquid crystal technique. The effect of periodic unsteady wake effect is also investigated by varying the wake Strouhal number from 0. to 0.2, and to 0.4. Results show that the trip strips placed against the leakage flow produce the lowest heat transfer on the tips compared to all the other cases with a reduction between 10–15% compared to the plain tip. Results also show that the pitch of the strips has a small effect on the overall reduction. Cylindrical pins fins and strips along the leakage flow direction do not decrease the heat transfer coefficients and in some cases enhance the heat transfer coefficients by as much as 20%.


Author(s):  
Dianliang Yang ◽  
Xiaobing Yu ◽  
Zhenping Feng

In this paper, numerical methods have been applied to the investigation of the effect of rotation on the blade tip leakage flow and heat transfer. Using the first stage rotor blade of GE-E3 engine high pressure turbine, both flat tip and squealer tip have been studied. The tip gap height is 1% of the blade height, and the groove depth of the squealer tip is 2% of the blade height. Heat transfer coefficient on tip surface obtained by using different turbulence models was compared with experimental results. And the grid independence study was carried out by using the Richardson extrapolation method. The effect of the blade rotation was studied in the following cases: 1) blade domain is rotating and shroud is stationary; 2) blade domain is stationary and shroud is rotating; and 3) both blade domain and shroud are stationary. In this approach, the effects of the relative motion of the endwall, the centrifugal force and the Coriolis force can be investigated respectively. By comparing the results of the three cases discussed, the effects of the blade rotation on tip leakage flow and heat transfer are revealed. It indicated that the main effect of the rotation on the tip leakage flow and heat transfer is resulted from the relative motion of the shroud, especially for the squealer tip blade.


Sign in / Sign up

Export Citation Format

Share Document