Investigation of Leakage Flow and Heat Transfer in a Gas Turbine Blade Tip With Emphasis on the Effect of Rotation

Author(s):  
Dianliang Yang ◽  
Xiaobing Yu ◽  
Zhenping Feng

In this paper, numerical methods have been applied to the investigation of the effect of rotation on the blade tip leakage flow and heat transfer. Using the first stage rotor blade of GE-E3 engine high pressure turbine, both flat tip and squealer tip have been studied. The tip gap height is 1% of the blade height, and the groove depth of the squealer tip is 2% of the blade height. Heat transfer coefficient on tip surface obtained by using different turbulence models was compared with experimental results. And the grid independence study was carried out by using the Richardson extrapolation method. The effect of the blade rotation was studied in the following cases: 1) blade domain is rotating and shroud is stationary; 2) blade domain is stationary and shroud is rotating; and 3) both blade domain and shroud are stationary. In this approach, the effects of the relative motion of the endwall, the centrifugal force and the Coriolis force can be investigated respectively. By comparing the results of the three cases discussed, the effects of the blade rotation on tip leakage flow and heat transfer are revealed. It indicated that the main effect of the rotation on the tip leakage flow and heat transfer is resulted from the relative motion of the shroud, especially for the squealer tip blade.

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Dianliang Yang ◽  
Xiaobing Yu ◽  
Zhenping Feng

Numerical analysis was applied to investigate the effect of rotation on the blade tip leakage flow and heat transfer. Flows around both flat and squealer tips at the first stage rotor blade of GE E3 high-pressure turbine were studied. The tip gap and squealer groove depth were specified as 1% and 2% of the blade height, respectively. The heat transfer coefficient on the tip surface was obtained by using different turbulence models and compared with the experimental data. The grid independence study was also carried out by using the Richardson extrapolation method. The effect of the blade rotation was studied in the following cases: (1) the blade domain is rotating and the shroud is stationary; (2) the blade domain is stationary and the shroud is rotating; and (3) both blade domain and shroud are stationary. In this approach, the effects of the relative motion of the endwall, the centrifugal force, and the Coriolis force can be investigated, respectively. By comparing the results of the three cases discussed, it is concluded that the main effect of the rotation on the tip leakage flow and heat transfer resulted from the relative motion of the shroud, especially for the squealer tip blade.


2008 ◽  
Author(s):  
Md Hamidur Rahman ◽  
Sung In Kim ◽  
Ibrahim Hassan

Steady simulations have been performed to investigate tip leakage flow and heat transfer characteristics on the casing and rotor blade tip in a single stage turbine engine. A turbine stage of stator and rotor was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data. The effects of tip clearance height and rotor rotational speed on the blade tip and casing heat transfer characteristics are mainly considered. It is observed that the tip leakage flow structure is highly dependent on the height of the tip gap as well as speeds of the rotor blade. In all cases, flow separates just around the corner of the pressure side of the blade tip. The region of recirculating flow increases with the increase of the clearance height. Then the flow reattaches on the tip surface near the suction side beyond the flow separation. This flow reattachment enhances surface heat transfer. The leakage flow interaction with the reverse cross flow, induced by relative casing motion, is found to have significant effect on the blade tip and casing heat transfer distribution. Critical region of high heat transfer on the casing exists near the blade tip leading edge and along the pressure side edge at all clearance height. Whereas, at high speed rotation, it tends to move towards the trailing edge due to the change of inflow angle.


2014 ◽  
Vol 11 (04) ◽  
pp. 1350058 ◽  
Author(s):  
MD HAMIDUR RAHMAN ◽  
SUNG IN KIM ◽  
IBRAHIM HASSAN

Unsteady simulations were performed to investigate time dependent behaviors of the leakage flow structures and heat transfer on the rotor blade tip and casing in a single stage gas turbine engine. This paper mainly illustrates the unsteady nature of the leakage flow and heat transfer, particularly, that caused by the stator–rotor interactions. In order to obtain time-accurate results, the effects of varying the number of time steps, sub iterations, and the number of vane passing periods was firstly examined. The effect of tip clearance height and rotor speeds was also examined. The results showed periodic patterns of the tip leakage flow and heat transfer rate distribution for each vane passing. The relative position of the vane and vane trailing edge shock with respect to time alters the flow conditions in the rotor domain, and results in significant variations in the tip leakage flow structures and heat transfer rate distributions. It is observed that the trailing edge shock phenomenon results in a critical heat transfer region on the blade tip and casing. Consequently, the turbine blade tip and casing are subjected to large fluctuations of Nusselt number (about Nu = 2000 to 6000 and about Nu = 1000 to 10000, respectively) at a high frequency (coinciding with the rotor speed).


Author(s):  
S. K. Krishnababu ◽  
H. P. Hodson ◽  
G. D. Booth ◽  
G. D. Lock ◽  
W. N. Dawes

A numerical investigation of the flow and heat transfer characteristics of tip leakage in a typical film cooled industrial gas turbine rotor is presented in this paper. The computations were performed on a rotating domain of a single blade with a clearance gap of 1.28% chord in an engine environment. This standard blade featured two coolant and two dust holes, in a cavity-type tip with a central rib. The computations were performed using CFX 5.6, which was validated for similar flow situations by Krishnababu et al., [18]. These predictions were further verified by comparing the flow and heat transfer characteristics computed in the absence of coolant ejection with computations previously performed in the company (SIEMENS) using standard in-house codes. Turbulence was modelled using the SST k-ω turbulence model. The comparison of calculations performed with and without coolant ejection has shown that the coolant flow partially blocks the tip gap, resulting in a reduction of the amount of mainstream leakage flow. The calculations identified that the main detrimental heat transfer issues were caused by impingement of the hot leakage flow onto the tip. Hence three different modifications (referred as Cases 1 to 3) were made to the standard blade tip in an attempt to reduce the tip gap exit mass flow and the associated impingement heat transfer. The improvements and limitations of the modified geometries, in terms of tip gap exit mass flow, total area of the tip affected by the hot flow and the total heat flux to the tip, are discussed. The main feature of the Case 1 geometry is the removal of the rib and this modification was found to effectively reduce both the total area affected by the hot leakage flow and total heat flux to the tip while maintaining the same leakage mass flow as the standard blade. Case 2 featured a rearrangement of the dust holes in the tip which, in terms of aero-thermal-dynamics, proved to be marginally inferior to Case 1. Case 3, which essentially created a suction-side squealer geometry, was found to be inferior even to the standard cavity tip blade. It was also found that the hot spots which occur in the leading edge region of the standard tip and all modifications contributed significantly to the area affected by the hot tip leakage flow and the total heat flux.


Author(s):  
Qihe Huang ◽  
Jiao Wang ◽  
Lei He ◽  
Qiang Xu

A numerical study is performed to simulate the tip leakage flow and heat transfer on the first stage rotor blade tip of GE-E3 turbine, which represents a modern gas turbine blade geometry. Calculations consist of the flat blade tip without and with film cooling. For the flat tip without film cooling case, in order to investigate the effect of tip gap clearance on the leakage flow and heat transfer on the blade tip, three different tip gap clearances of 1.0%, 1.5% and 2.5% of the blade span are considered. And to assess the performance of the turbulence models in correctly predicting the blade tip heat transfer, the simulations have been performed by using four different models (the standard k-ε, the RNG k-ε, the standard k-ω and the SST models), and the comparison shows that the standard k-ω model provides the best results. All the calculations of the flat tip without film cooling have been compared and validated with the experimental data of Azad[1] and the predictions of Yang[2]. For the flat tip with film cooling case, three different blowing ratio (M = 0.5, 1.0, and 1.5) have been studied to the influence on the leakage flow in tip gap and the cooling effectiveness on the blade tip. Tip film cooling can largely reduce the overall heat transfer on the tip. And the blowing ratio M = 1.0, the cooling effect for the blade tip is the best.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Sergen Sakaoglu ◽  
Harika S. Kahveci

Abstract The pressure difference between suction and pressure sides of a turbine blade leads to tip leakage flow, which adversely affects the first-stage high-pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are exposed to extreme thermal conditions requiring cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to leakage. Therefore, the compromise between the aerodynamic loss and the gain in tip-cooling effectiveness must be optimized. In this paper, the effect of tip-cooling configuration on the turbine blade tip is investigated numerically from both aerodynamics and thermal aspects to determine the optimum configuration. Computations are performed using the tip cross section of GE-E3 HP turbine first-stage blade for squealer and flat tips, where the number, location, and diameter of holes are varied. The study presents a discussion on the overall loss coefficient, total pressure loss across the tip clearance, and variation in heat transfer on the blade tip. Increasing the coolant mass flow rate using more holes or by increasing the hole diameter results in a decrease in the area-averaged Nusselt number on the tip floor. Both aerodynamic and thermal response of squealer tips to the implementation of cooling holes is superior to their flat counterparts. Among the studied configurations, the squealer tip with a larger number of cooling holes located toward the pressure side is highlighted to have the best cooling performance.


Author(s):  
Arun K. Saha ◽  
Sumanta Acharya ◽  
Chander Prakash ◽  
Ron Bunker

A numerical study has been conducted to explore the effect of a pressure-side winglet on the flow and heat transfer over a blade tip. Calculations are performed for both a flat tip and a squealer tip. The winglet is in the form of a flat extension, and is shaped in the axial chord direction to have the maximum thickness at the chord location where the pressure difference is the largest between the pressure and suction sides. For the flat tip, the pressure side winglet exhibits a significant reduction in the leakage flow strength and an associated reduction in the aerodynamic loss. The low heat transfer coefficient “sweet-spot” region is larger with the pressure-side winglet, and lower heat transfer coefficients are also observed along the pressure side of the blade. The winglet reduces the average heat transfer coefficient by about 7%. In the presence of a squealer, the role of the winglet decreases significantly, and only a 0.5% reduction in the pressure ratio is achieved with the winglet with virtually no reduction in the average heat transfer coefficient.


Author(s):  
Sergen Sakaoglu ◽  
Harika S. Kahveci

Abstract The pressure difference between suction and pressure sides of a turbine blade leads to the so-called phenomenon, the tip leakage flow, which most adversely affects the first-stage high-pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are also exposed to extreme thermal conditions requiring the use of tip cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to this leakage flow. Therefore, it is necessary to handle the design of tip cooling in such a way that the compromise between the aerodynamic loss and the gain in the tip cooling effectiveness is optimized. In this paper, the effect of tip cooling configuration on the turbine blade tip is investigated numerically both from the aerodynamics and thermal aspects in order to determine the optimum tip cooling configuration. The studies are carried out using the tip cross-section of General Electric E3 (Energy Efficient Engine) HP turbine first-stage blade for two different tip geometries, squealer tip and flat tip, where the number, location, and diameter of the cooling holes are varied. The study presents a discussion on the overall loss coefficient, the total pressure loss across the tip clearance, and the variation of heat transfer on the blade tip. The aerodynamic and heat transfer results are compared with the experimental data from literature. It is observed that increasing the coolant mass flow rate by using more holes or by increasing the hole diameter results in a decrease in the area-averaged Nusselt number on the tip floor, as expected. The findings show that both aerodynamic and thermal response of the squealer tips to the implementation of cooling holes is superior to their flat counterparts. Among the studied configurations, the squealer tip with larger number of cooling holes located towards the pressure side is highlighted as the configuration having the best cooling performance.


Sign in / Sign up

Export Citation Format

Share Document