Adaptive Continuously Variable Compression Braking Control for Heavy-Duty Vehicles

2002 ◽  
Vol 124 (3) ◽  
pp. 406-414 ◽  
Author(s):  
Maria Druzhinina ◽  
Anna Stefanopoulou ◽  
Lasse Moklegaard

Modern heavy-duty vehicles are equipped with compression braking mechanisms that augment their braking capability and reduce wear of the conventional friction brakes. In this paper we consider a heavy-duty vehicle equipped with a continuously variable compression braking mechanism. The variability of the compression braking torque is achieved through controlling a secondary opening of the exhaust valve of the vehicle’s turbocharged diesel engine using a variable valve timing actuator. A model reference adaptive controller is designed to ensure good vehicle speed tracking performance in brake-by-wire driving scenarios in presence of large payload and road grade variations. The adaptive controller is integrated with backstepping procedure to account for compression braking actuator dynamics, with observers for various unmeasured quantities and with compensation schemes for actuator saturation. In addition to speed tracking, the vehicle mass and road grade are simultaneously estimated if persistence of excitation-type conditions hold. The final version of the controller is successfully evaluated on a high order crank angle model of a vehicle with a six-cylinder engine.

2001 ◽  
Author(s):  
Maria Druzhinina ◽  
Anna Stefanopoulou ◽  
Lasse Moklegaard

Abstract In this paper we present further results on adaptive compression braking control for a Class-8 heavy duty vehicle with the objective to achieve good and consistent vehicle speed tracking performance during large variation in vehicle mass (payload) and road grade. In our previous work the adaptive controller performance was tested in simulations on a reduced order nonlinear vehicle/engine model. In this paper, we include several modifications to deal with actuator saturation and unmodeled dynamics. The final version of the controller is successfully evaluated on a high order crankangle model. Good tracking performance during braking as well as estimation properties of the algorithm for vehicle mass and road grade are confirmed. Moreover, the stability and response properties of the overall scheme are rigorously analyzed.


Author(s):  
Richard M. Ziernicki

The writer discusses the performance of heavy duty vehicles during emergency braking. The paper reviews statistical data related to the trucking accidents, and discusses brake performance, tires, and the stopping ability of heavy duty vehicles. Relationships between drag factor, coefficient of friction, vehicle speed, type of tire, road surface, brake design, and brake temperature are discussed. Some of the test results performed on heavy trucks are presented. The discussion is general in order to make the presentation useful both to practicing reconstruction specialists, and to attorneys.


Author(s):  
Carrie M Hall

A wide range of strategies for reducing energy consumption from heavy-duty vehicles have been explored from vehicle electrification to real-time vehicle energy management based on vehicle-to-vehicle and vehicle-to-infrastructure communication. Full electrification of heavy-duty vehicles can be challenging due to current limitations on battery energy density. However, hybridization and the implementation of high efficiency engines present other potential near-term solutions. In contrast to many prior studies that have explored the use of one or two of these techniques, this work discusses the combined influence of hybridization level, engine combustion mode, and connected energy management on fuel efficiency in heavy-duty applications. The impact of hybridization in different driving conditions is quantified and the effectiveness of hybrid powertrain structures with different engine combustion strategies is also explored. Utilizing an alternative combustion strategy can improve fuel efficiency by 5% in conventional and mild hybrids but was found to have a more minimal impact in full hybrids. An additional layer of complexity is also introduced when vehicles have some degree of connectivity and this influence on the energy management method is investigated by comparing control approaches which leverage current and future vehicle speed information. Connectivity and the ability to optimize energy production in real-time was found to be essential in uncertain cases and enable improvements in fuel consumption of up to 12% over baseline cases.


1996 ◽  
Vol 25 (4) ◽  
pp. 251-276 ◽  
Author(s):  
DIANA YANAKIEV ◽  
IOANNIS KANELLAKOPOULOS

Sign in / Sign up

Export Citation Format

Share Document