scholarly journals U.S. Department of Energy Wind Energy Research Program for Low Wind Speed Technology of the Future

2002 ◽  
Vol 124 (4) ◽  
pp. 455-458 ◽  
Author(s):  
Stan Calvert ◽  
Robert Thresher, ◽  
Susan Hock, ◽  
Alan Laxson, and ◽  
Brian Smith
2012 ◽  
Vol 622-623 ◽  
pp. 1188-1193 ◽  
Author(s):  
Hüseyin Çamur ◽  
Youssef Kassem

The purpose of this work is to determine the drag characteristics and the torque of three C-section blades wind car. Three C-section blades are directly connected to wheels by using of various kinds of links. Gears are used to convert the wind energy to mechanical energy to overcome the load exercised on the main shaft under low speed. Previous work on three vertical blades wind car resulted in discrepancies when compared to this work. Investigating these differences was the motivation for this series of work. The calculated values were compared to the data of three vertical blades wind car. The work was conducted in a low wind speed. The drag force acting on each model was calculated with an airflow velocity of 4 m/s and angular velocity of the blade of 13.056 rad/s.


Author(s):  
Yusuf Alper Kaplan

In this study, the compatibility of the real wind energy potential to the estimated wind energy potential by Weibull Distribution Function (WDF) of a region with low average wind speed potential was examined. The main purpose of this study is to examine the performance of six different methods used to find the coefficients of the WDF and to determine the best performing method for selected region. In this study seven-year hourly wind speed data obtained from the general directorate of meteorology of this region was used. The root mean square error (RMSE) statistical indicator was used to compare the efficiency of all used methods. Another main purpose of this study is to observe the how the performance of the used methods changes over the years. The obtained results showed that the performances of the used methods showed slight changes over the years, but when evaluated in general, it was observed that all method showed acceptable performance. Based on the obtained results, when the seven-year data is evaluated in this selected region, it can be said that the MM method shows the best performance.


2017 ◽  
Vol 13 (S338) ◽  
pp. 65-71
Author(s):  
Kenneth Herner ◽  
Marcelle Soares-Santos ◽  
James Annis

AbstractMotivated by the prospect of the wealth of data arising from the inauguration of the era of gravitational wave detection by ground-based interferometers the DES collaboration, in partnership with members of the LIGO collaboration and members of the astronomical community at large, have established a research program to search for their optical counterparts and to explore their use as cosmological probes. In this talk we present the status of our program and discuss prospects for establishing this new probe as part of the portfolio of the Dark Energy research program in the future, in particular for the next generation survey, LSST.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1463 ◽  
Author(s):  
Kehinde A. Adeyeye ◽  
Nelson Ijumba ◽  
Jonathan S. Colton

The global population is moving away from fossil fuel technologies due to their many disadvantages, such as air pollution, greenhouse gases emission, global warming, acid rain, health problems, and high costs. These disadvantages make fossil fuels unsustainable. As a result, renewable energy is becoming more attractive due to its steadily decreasing costs. Harnessing renewable energy promises to meet the present energy demands of the African continent. The enormous renewable energy potential available across the African continent remains largely untapped, especially for wind energy. However, marginal and fair wind speeds and power densities characterize African wind energy resulting in low and unsustainable power in many areas. This research develops a techno-economic model for wind energy cost analysis for a novel, Ferris wheel-based wind turbine. The model is used to techno-economically analyze the siting of wind turbine sites in low wind speed areas on the African continent. The wind turbine’s technical performance is characterized by calculating the annual energy production and the capacity factor using the wind Weibull probability distribution of the cities and theoretical power curve of the wind turbine. Its economic performance is evaluated using annualized financial return on investment, simple payback period, and levelized cost of electricity. The techno-economic model is validated for 21 African cities and shows that the Ferris wheel-based design is very competitive with four current, commercial wind turbines, as well as with other sources of energy. Hence, the new wind turbine may help provide the economical, clean, renewable energy that Africa needs.


Sign in / Sign up

Export Citation Format

Share Document