Robust Adaptive Control of Nonlinear Output Feedback Systems Under Disturbances With Unknown Bounds

2004 ◽  
Vol 126 (1) ◽  
pp. 229-235 ◽  
Author(s):  
Dong H. Kim ◽  
Hua O. Wang ◽  
Hai-Won Yang

This paper describes a systematic procedure to design robust adaptive controllers for a class of nonlinear systems with unknown functions of unknown bounds based on backstepping and sliding mode techniques. These unknown functions can be unmodeled system nonlinearities, uncertainties and disturbances with unknown bounds. Both state feedback and output feedback designs are addressed. In the design procedure, the upper bounds of the unknown functions are estimated using an adaptation strategy, and the estimates are used to design stabilizing functions and control inputs based on the backstepping design methodology. The proposed controllers guarantee that the tracking errors converge to a residual set close to zero exponentially for both state feedback and output feedback designs, while maintaining the boundedness of all other variables.

2001 ◽  
Vol 11 (04) ◽  
pp. 1149-1158 ◽  
Author(s):  
YIGUANG HONG ◽  
HUASHU QIN ◽  
GUNARONG CHEN

This letter addresses the problem of robust adaptive control for synchronization of continuous-time coupled chaotic systems, which may be subjected to disturbances. A general model is studied via two different approaches, using either state feedback or measured output feedback controls. Adaptive controllers are designed, in which a sliding mode structure is employed to increase the robustness of the closed-loop systems. When only output variables are measurable for synchronization, the adaptive controllers are designed by incorporating with a filter and using the so-called σ-modification technique. Several numerical examples are presented to show the effectiveness of the proposed chaos synchronization methods.


Author(s):  
Abdelkrim Brahmi ◽  
Maarouf Saad ◽  
Brahim Brahmi ◽  
Ibrahim El Bojairami ◽  
Guy Gauthier ◽  
...  

In the research put forth, a robust adaptive control method for a nonholonomic mobile manipulator robot, with unknown inertia parameters and disturbances, was proposed. First, the description of the robot’s dynamics model was developed. Thereafter, a novel adaptive sliding mode control was designed, to which all parameters describing involved uncertainties and disturbances were estimated by the adaptive update technique. The proposed control ensures a relatively good system tracking, with all errors converging to zero. Unlike conventional sliding mode controls, the suggested is able to achieve superb performance, without resulting in any chattering problems, along with an extremely fast system trajectories convergence time to equilibrium. The aforementioned characteristics were attainable upon using an innovative reaching law based on potential functions. Furthermore, the Lyapunov approach was used to design the control law and to conduct a global stability analysis. Finally, experimental results and comparative study collected via a 05-DoF mobile manipulator robot, to track a given trajectory, showing the superior efficiency of the proposed control law.


1999 ◽  
Vol 121 (1) ◽  
pp. 48-57 ◽  
Author(s):  
I. Egemen Tezcan ◽  
Tamer Bas¸ar

We present a systematic procedure for designing H∞-optimal adaptive controllers for a class of single-input single-output parametric strict-feedback nonlinear systems that are in the output-feedback form. The uncertain nonlinear system is minimum phase with a known relative degree and known sign of the high-frequency gain. We use soft projection on the parameter estimates to keep them bounded in the absence of persistent excitations. The objective is to obtain disturbance attenuating output-feedback controllers which will track a smooth bounded trajectory and keep all closed-loop signals bounded in the presence of exogenous disturbances. Two recent papers (Pan and Bas¸ar, 1996a; Marino and Tomei, 1995) addressed a similar problem with full state information, using two different approaches, and obtained asymptotically tracking and disturbance-attenuating adaptive controllers. Here, we extend these results to the output measurement case for a class of minimum phase nonlinear systems where the nonlinearities depend only on the measured output. It is shown that arbitrarily small disturbance attenuation levels can be obtained at the expense of increased control effort. The backstepping methodology, cost-to-come function based H∞ -filtering and singular perturbations analysis constitute the framework of our robust adaptive control design scheme.


Sign in / Sign up

Export Citation Format

Share Document