Robust adaptive tracking control for uncertain nonholonomic mobile manipulator

Author(s):  
Abdelkrim Brahmi ◽  
Maarouf Saad ◽  
Brahim Brahmi ◽  
Ibrahim El Bojairami ◽  
Guy Gauthier ◽  
...  

In the research put forth, a robust adaptive control method for a nonholonomic mobile manipulator robot, with unknown inertia parameters and disturbances, was proposed. First, the description of the robot’s dynamics model was developed. Thereafter, a novel adaptive sliding mode control was designed, to which all parameters describing involved uncertainties and disturbances were estimated by the adaptive update technique. The proposed control ensures a relatively good system tracking, with all errors converging to zero. Unlike conventional sliding mode controls, the suggested is able to achieve superb performance, without resulting in any chattering problems, along with an extremely fast system trajectories convergence time to equilibrium. The aforementioned characteristics were attainable upon using an innovative reaching law based on potential functions. Furthermore, the Lyapunov approach was used to design the control law and to conduct a global stability analysis. Finally, experimental results and comparative study collected via a 05-DoF mobile manipulator robot, to track a given trajectory, showing the superior efficiency of the proposed control law.

2014 ◽  
Vol 852 ◽  
pp. 391-395
Author(s):  
Yong Gao ◽  
Zhao Qing Song ◽  
Xiao Liu

Quad-rotor is a multi-variable and strong coupling system which has nonlinear and uncertainties. According to the quad-rotor, a dynamic model of attitude which included uncertainty parameters and unknown disturbances was established. The tracking error state was used to design a slide mode surface, and a Lyapunov function which includes slide mode surface and unknown parameter was built. Further more, a robust adaptive control law was designed. At last, the designed control law was simulated, and the results justify the feasibility of the proposed control law.


Author(s):  
Brahim Brahmi ◽  
Abdelkrim Brahmi ◽  
Maarouf Saad ◽  
Guy Gauthier ◽  
Mohammad Habibur Rahman

Abstract Rehabilitation robots have become an influential tool in physiotherapy treatment because they are able to provide intensive rehabilitation treatment over a long period of time. However, this technology still suffers from various problems such as dynamic uncertainties, external disturbances, and human–robot interaction. In this paper, we propose a robust adaptive control approach of an exoskeleton robot with an unknown dynamic model and external disturbances. First, the dynamics of the exoskeleton's arm is presented. Then, we design a robust adaptive sliding mode control in which the parameter uncertainties and the disturbances are estimated by the adaptive update methods. The proposed control ensures a good tracking of the system with a finite time convergence of sliding surface to zero. Throughout this paper, the designed control law and the global stability analysis are formulated and demonstrated based on the appropriate choice of the candidate Lyapunov function. The experimental and comparative results, performed for seven degrees-of-freedom (DOFs) exoskeleton arm with three healthy subjects to track a passive rehabilitation motion, confirm the effectiveness and robustness of the proposed control law compared with conventional adaptive approach.


1998 ◽  
Vol 123 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Mooncheol Won ◽  
J. K. Hedrick

This paper presents a discrete-time adaptive sliding control method for SISO nonlinear systems with a bounded disturbance or unmodeled dynamics. Control and adaptation laws considering input saturation are obtained from approximately discretized nonlinear systems. The developed disturbance adaptation or estimation law is in a discrete-time form, and differs from that of conventional adaptive sliding mode control. The closed-loop poles of the feedback linearized sliding surface and the adaptation error dynamics can easily be placed. It can be shown that the adaptation error dynamics can be decoupled from sliding surface dynamics using the proposed scheme. The proposed control law is applied to speed tracking control of an automatic engine subject to unknown external loads. Simulation and experimental results verify the advantages of the proposed control law.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Ehsan Maani Miandoab ◽  
Aghil Yousefi-Koma ◽  
Saeed Hashemnia

Two different control methods, namely, adaptive sliding mode control and impulse damper, are used to control the chaotic vibration of a block on a belt system due to the rate-dependent friction. In the first method, using the sliding mode control technique and based on the Lyapunov stability theory, a sliding surface is determined, and an adaptive control law is established which stabilizes the chaotic response of the system. In the second control method, the vibration of this system is controlled by an impulse damper. In this method, an impulsive force is applied to the system by expanding and contracting the PZT stack according to efficient control law. Numerical simulations demonstrate the effectiveness of both methods in controlling the chaotic vibration of the system. It is shown that the settling time of the controlled system using impulse damper is less than that one controlled by adaptive sliding mode control; however, it needs more control effort.


Author(s):  
Chakib Ben Njima ◽  
Anouar Benamor ◽  
Hassani Messaoud

This article proposes a novel robust adaptive sliding control mode law for time unknown varying delay in state uncertain systems. In this work, the upper limit of disruption and uncertainty is assumed to be unknown. The model is adjusted so that the system looks like a certain one with unknown added disturbances on the bounds of which are unknown too. Accordingly, new control law for this kind of systems has been defined based on a Lypunov function choice. The main results of this paper are that the conditions for the existence of linear sliding surfaces are derived within the linear matrix inequalities (LMIs) framework by employing the free weighting matrices and the determination of the control law based on a sliding surface will converge to zero. This proposed approach has been validated in simulation on an uncertain system with comparative study proved the efficiency of the proposed resulting methodology after has been validated in real system.


1998 ◽  
Vol 124 (1) ◽  
pp. 231-234 ◽  
Author(s):  
Hongliu Du ◽  
Satish S. Nair

A robust adaptive design method is proposed for the on-line compensation of uncertainties, for a class of nonlinear systems. As an extension of previous work, the adaptive part of the control law uses a constructive Gaussian network without any prior training, and the control law provides robustness using a systematically designed sliding mode term. In the design, learning and control bounds are guaranteed by properly constructing the control architecture using the proposed methods. The robust adaptive control strategy, with the proposed design guidelines, has been validated using a hardware example case of a nonlinear robotic linkage system. Experiments have shown that the inclusion of the proposed stable learning and robust terms into the control design, using the proposed constructive methods, results in improved system performance for the example case system.


2021 ◽  
Author(s):  
Seyyed Mohammad Hosseini Rostami ◽  
Fatemeh Jahangiri

Abstract The purpose of this paper is to design a control system for a mobile four-wheeled robot, whose task is to achieve stability and proper operation in the execution of commands. As a result of the nonlinear dynamics, structural and parametric uncertainty of this robot, various control approaches are used in order to achieve stability, proper performance, minimize modeling errors and uncertainties, etc. By adjusting linear and angular velocities in the presence of external disturbances and parametric uncertainty, this algorithm is able to follow a predetermined trajectory based on the information contained in the signals received by the sensor from the trajectory.. In previous articles, the upper bound of uncertainty was assumed to be known. This paper makes the assumption that the upper band of uncertainty and disturbances in robotic systems is unknown, since, in many cases, we cannot know the extent of these uncertainties in practice. In our recent paper, we generalized the sliding mode control law and proved its effectiveness, so that by including an adaptive part to the control law, we transformed it into a robust-adaptive sliding mode control, and we could estimate the upper band uncertainties online based on these adaptive laws. This typology can be expressed as a distinct theorem with stable results. Simulations with MATLAB software demonstrate that the controller ensures optimal performance under external disturbances and parametric uncertainty with less fluctuations.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 95 ◽  
Author(s):  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

In this paper, a fault-tolerant control method is proposed for quadcopter unmanned aerial vehicles (UAV) to account for system uncertainties and actuator faults. A mathematical model of the quadcopter UAV is first introduced when faults occur in actuators. A normal adaptive sliding mode control (NASMC) approach is proposed as a baseline controller to handle the chattering problem and system uncertainties, which does not require information of the upper bound. To improve the performance of the NASMC scheme, radial basis function neural networks are combined with an adaptive scheme to make a quick compensation in presence of system uncertainties and actuator faults. The Lyapunov theory is applied to verify the stability of the proposed methods. The effectiveness of modified ASMC algorithm is compared with that of NASMC using numerical examples under different faulty conditions.


2021 ◽  
Vol 5 (2) ◽  
pp. p9
Author(s):  
Gao Hang

In order to overcome the trajectory tracking distortion caused by the friction mutations of the sandblasting and rust removal parallel robot based on the Stewart parallel mechanism, a fuzzy adaptive sliding mode control method that compensates for the friction mutations is designed. Firstly, the kinematics of the mechanism is analyzed by analytic method and the dynamic model of the Stewart parallel mechanism is established based on Lagrange method. Then, the robust adaptive term of the sliding mode is designed based on the sliding mode variable to estimate the uncertain term in real time, replacing the sliding Switching items of mode control to compensate for the influence of uncertain factors such as unmodeled dynamics, external disturbances and time-varying parameters, and to effectively suppress chattering of sliding mode control; Next, by designing fuzzy control based on sliding mode variable and sliding mode variable derivative, the dynamic adjustment of the sliding mode robust adaptive term gain is realized to compensate for the interference of the frictional force mutation, thereby eliminating the trajectory tracking distortion problem of the Stewart mechanism joint commutation. Finally, using MATLAB control method for numerical simulation and verify the effectiveness of the proposed fuzzy adaptive sliding mode control method to compensate for friction mutations.


10.5772/50915 ◽  
2012 ◽  
Vol 9 (1) ◽  
pp. 20 ◽  
Author(s):  
Juntao Fei ◽  
Hongfei Ding ◽  
Shixi Hou ◽  
Shitao Wang ◽  
Mingyuan Xin

In this paper, a neural network adaptive sliding mode control is proposed for an MEMS triaxial gyroscope with unknown system nonlinearities. An input-output linearization technique is incorporated into the neural adaptive tracking control to cancel the nonlinearities, and the neural network whose parameters are updated from the Lyapunov approach is used to perform the linearization control law. The sliding mode control is utilized to compensate the neural network's approximation errors. The stability of the closed-loop system can be guaranteed with the proposed adaptive neural sliding mode control. Numerical simulations are investigated to verify the effectiveness of the proposed adaptive neural sliding mode control scheme.


Sign in / Sign up

Export Citation Format

Share Document