Steady State Hydraulic Valve Fluid Field Estimator Based on Non-Dimensional Artificial Neural Network (NDANN)

2004 ◽  
Vol 4 (3) ◽  
pp. 257-270 ◽  
Author(s):  
M. Cao ◽  
K. W. Wang ◽  
L. DeVries ◽  
Y. Fujii , ◽  
W. E. Tobler , ◽  
...  

An automatic transmission (AT) hydraulic control system includes many spool-type valves that have highly asymmetric flow geometry. A simplified flow field model based on a lumped geometry is computationally efficient. However, it often fails to account for asymmetric flow characteristics, leading to an inaccurate analysis. An accurate analysis of their flow fields typically requires using the computational fluid dynamics (CFD) technique, which is numerically inefficient and time consuming. In this paper, a new hydraulic valve fluid field model is developed based on non-dimensional artificial neural networks (NDANNs) to provide an accurate and numerically efficient tool in AT control system design applications. A grow-and-trim procedure is proposed to identify critical non-dimensional inputs and optimize the network architecture. A hydraulic valve testing bench is designed and built to provide data for neural network model development. NDANN-based fluid force and flow rate estimators are established based on the experimental data. The NDANN models provide more accurate predictions of flow force and flow rates under broad operating conditions (such as different pressure drops and valve openings) compared with conventional lumped flow field models. Because of its non-dimensional characteristic, the NDANN fluid field estimator also exhibits good input-output scalability, which allows the NDANN model to estimate the fluid force and flow rate even when the operating condition parameter or design geometry parameters are outside the range of the training data. That is, although the operating/geometry parameter values are outside the range of the training sets, the non-dimensional values of the specific operating/geometry parameters are still within the training range. This feature makes the new model a potential candidate as a system design tool.

Author(s):  
M. Cao ◽  
K. W. Wang ◽  
L. DeVries ◽  
Y. Fujii ◽  
W. E. Tobler ◽  
...  

A conventional automatic transmission (AT) hydraulic control system includes many spool-type valves that have highly asymmetric flow geometry. An accurate analysis of their flow fields typically requires a time-consuming computational fluid dynamics (CFD) technique. A simplified flow field model that is based on a lumped geometry is computationally efficient. However, it often fails to account for asymmetric flow characteristics, leading to an inaccurate analysis. In this work, a new hydraulic valve fluid field model is developed based on a non-dimensional neural network (NDANN) to provide an accurate and numerically efficient tool in AT control system design applications. A “grow-and-trim” procedure is proposed to identify critical non-dimensional inputs and optimize the network architecture. A hydraulic valve testing bench is designed and built to provide data for neural network model development. NDANN-based fluid force and flow rate estimator are established based on the experimental data. The NDANN models provide more accurate predictions of flow force and flow rates under broad operating conditions compared with conventional lumped flow field models. The NDANN fluid field estimator also exhibits input-output scalability. This capability allows the NDANN model to estimate the fluid force and flow rate even when the design geometry parameters are outside the range of the training data.


2005 ◽  
Vol 128 (3) ◽  
pp. 636-654 ◽  
Author(s):  
M. Cao ◽  
K. W. Wang ◽  
L. DeVries ◽  
Y. Fujii ◽  
W. E. Tobler ◽  
...  

In automatic transmission design, electronic control techniques have been adopted through proportional variable-force-solenoid valves, which typically consist of spool-type valves (Christenson, W. A., 2000, SAE Technical Paper Series, 2000-01-0116). This paper presents an experimental investigation and neural network modeling of the fluid force and flow rate for a spool-type hydraulic valve with symmetrically distributed circular ports. Through extensive data analysis, general trends of fluid force and flow rate are derived as functions of pressure drop and valve opening. To further reveal the insights of the spool valve fluid field, equivalent jet angle and discharge coefficient are calculated from the measurements, based on the lumped parameter models. By incorporating physical knowledge with nondimensional artificial neural networks (NDANN), gray-box NDANN-based hydraulic valve system models are also developed through the use of equivalent jet angle and discharge coefficient. The gray-box NDANN models calculate fluid force and flow rate as well as the intermediate variables with useful design implications. The network training and testing demonstrate that the gray-box NDANN fluid field estimators can accurately capture the relationship between the key geometry parameters and discharge coefficient/jet angle. The gray-box NDANN maintains the nondimensional network configuration, and thus possesses good scalability with respect to the geometry parameters and key operating conditions. All of these features make the gray-box NDANN fluid field estimator a valuable tool for hydraulic system design.


Author(s):  
M. Cao ◽  
K. W. Wang ◽  
L. DeVries ◽  
Y. Fujii ◽  
W. E. Tobler ◽  
...  

This paper describes empirical investigations of the fluid field for a spool-type hydraulic valve with symmetrically distributed circular ports that is often found in an automotive VFS (Variable Force Solenoid) valve system. Through extensive data analysis, a general trend of fluid force and flow rate is derived as a function of pressure drop and valve opening. Aiming at further revealing the insights of the steady state spool valve fluid field, the equivalent jet angle and discharge coefficient are calculated from the measurements based on the lumped parameter models. New Non-Dimensional Artificial Neural Network (NDANN)-based hydraulic valve system models are also developed in this paper through the use of equivalent jet angle and discharge coefficient. By introducing the outputs of the new NDANN models into the lumped parameter model, fluid force and flow rate can be easily calculated. Therefore, the new approach calculates fluid force and flow rate as well as the intermediate variables (equivalent jet angle and discharge coefficient) with useful design implications. The network training and testing demonstrate that the NDANN fluid field estimators can accurately capture the relationship between the key geometry parameters and discharge coefficient/jet angle. The new approach also maintains the non-dimensional network configuration and possesses scalability with respect to the geometry parameters and key operating conditions. All these features make the new NDANN fluid field estimator a valuable tool for automotive hydraulic system design.


Author(s):  
Chuanjie Lan ◽  
Xinqian Zheng ◽  
Hideaki Tamaki

Turbocharger technology is widely used in internal combustion engines. With the downsizing of internal combustion engines and the introduction of strict emission regulations, there is urgent demand for turbochargers featuring centrifugal compressors with a wide flow range. The flow in a centrifugal compressor of a turbocharger is non-axisymmetric due to the inherent asymmetry of the discharge volute. The asymmetric flow field inside the diffuser has great influence on the performance of centrifugal compressor. In order to develop a flow control method that facilitates a wider flow range of turbocharger compressors, further understanding of the asymmetric flow structure is very important. The main subject of this study is to reveal the asymmetrical characteristics of the flow field in the vaneless diffuser of a centrifugal compressor followed by a volute. Oil flow visualizations and numerical simulations were used. The results of the numerical simulations are consistent with that of the oil flow visualizations near choke and at designed flow rate. The results show that a “dual-zone mode” asymmetric flow structure exists near the shroud of the vaneless diffuser at near choke condition. A bifurcation point at the volute tongue that divides the flow and creates two distinct flow patterns was found. The asymmetry of the flow structure near the hub was much less significant than that near the shroud. At the design flow rate, asymmetric flow patterns are found neither near shroud nor near hub. At near surge condition, the pattern of the oil flow traces near the shroud is very different from those near choke.


Sign in / Sign up

Export Citation Format

Share Document