Experimental Characterization and Gray-Box Modeling of Spool-Type Automotive Variable-Force-Solenoid Valves With Circular Flow Ports and Notches

2005 ◽  
Vol 128 (3) ◽  
pp. 636-654 ◽  
Author(s):  
M. Cao ◽  
K. W. Wang ◽  
L. DeVries ◽  
Y. Fujii ◽  
W. E. Tobler ◽  
...  

In automatic transmission design, electronic control techniques have been adopted through proportional variable-force-solenoid valves, which typically consist of spool-type valves (Christenson, W. A., 2000, SAE Technical Paper Series, 2000-01-0116). This paper presents an experimental investigation and neural network modeling of the fluid force and flow rate for a spool-type hydraulic valve with symmetrically distributed circular ports. Through extensive data analysis, general trends of fluid force and flow rate are derived as functions of pressure drop and valve opening. To further reveal the insights of the spool valve fluid field, equivalent jet angle and discharge coefficient are calculated from the measurements, based on the lumped parameter models. By incorporating physical knowledge with nondimensional artificial neural networks (NDANN), gray-box NDANN-based hydraulic valve system models are also developed through the use of equivalent jet angle and discharge coefficient. The gray-box NDANN models calculate fluid force and flow rate as well as the intermediate variables with useful design implications. The network training and testing demonstrate that the gray-box NDANN fluid field estimators can accurately capture the relationship between the key geometry parameters and discharge coefficient/jet angle. The gray-box NDANN maintains the nondimensional network configuration, and thus possesses good scalability with respect to the geometry parameters and key operating conditions. All of these features make the gray-box NDANN fluid field estimator a valuable tool for hydraulic system design.

Author(s):  
M. Cao ◽  
K. W. Wang ◽  
L. DeVries ◽  
Y. Fujii ◽  
W. E. Tobler ◽  
...  

This paper describes empirical investigations of the fluid field for a spool-type hydraulic valve with symmetrically distributed circular ports that is often found in an automotive VFS (Variable Force Solenoid) valve system. Through extensive data analysis, a general trend of fluid force and flow rate is derived as a function of pressure drop and valve opening. Aiming at further revealing the insights of the steady state spool valve fluid field, the equivalent jet angle and discharge coefficient are calculated from the measurements based on the lumped parameter models. New Non-Dimensional Artificial Neural Network (NDANN)-based hydraulic valve system models are also developed in this paper through the use of equivalent jet angle and discharge coefficient. By introducing the outputs of the new NDANN models into the lumped parameter model, fluid force and flow rate can be easily calculated. Therefore, the new approach calculates fluid force and flow rate as well as the intermediate variables (equivalent jet angle and discharge coefficient) with useful design implications. The network training and testing demonstrate that the NDANN fluid field estimators can accurately capture the relationship between the key geometry parameters and discharge coefficient/jet angle. The new approach also maintains the non-dimensional network configuration and possesses scalability with respect to the geometry parameters and key operating conditions. All these features make the new NDANN fluid field estimator a valuable tool for automotive hydraulic system design.


Author(s):  
M. Cao ◽  
K. W. Wang ◽  
L. DeVries ◽  
Y. Fujii ◽  
W. E. Tobler ◽  
...  

A conventional automatic transmission (AT) hydraulic control system includes many spool-type valves that have highly asymmetric flow geometry. An accurate analysis of their flow fields typically requires a time-consuming computational fluid dynamics (CFD) technique. A simplified flow field model that is based on a lumped geometry is computationally efficient. However, it often fails to account for asymmetric flow characteristics, leading to an inaccurate analysis. In this work, a new hydraulic valve fluid field model is developed based on a non-dimensional neural network (NDANN) to provide an accurate and numerically efficient tool in AT control system design applications. A “grow-and-trim” procedure is proposed to identify critical non-dimensional inputs and optimize the network architecture. A hydraulic valve testing bench is designed and built to provide data for neural network model development. NDANN-based fluid force and flow rate estimator are established based on the experimental data. The NDANN models provide more accurate predictions of flow force and flow rates under broad operating conditions compared with conventional lumped flow field models. The NDANN fluid field estimator also exhibits input-output scalability. This capability allows the NDANN model to estimate the fluid force and flow rate even when the design geometry parameters are outside the range of the training data.


2004 ◽  
Vol 4 (3) ◽  
pp. 257-270 ◽  
Author(s):  
M. Cao ◽  
K. W. Wang ◽  
L. DeVries ◽  
Y. Fujii , ◽  
W. E. Tobler , ◽  
...  

An automatic transmission (AT) hydraulic control system includes many spool-type valves that have highly asymmetric flow geometry. A simplified flow field model based on a lumped geometry is computationally efficient. However, it often fails to account for asymmetric flow characteristics, leading to an inaccurate analysis. An accurate analysis of their flow fields typically requires using the computational fluid dynamics (CFD) technique, which is numerically inefficient and time consuming. In this paper, a new hydraulic valve fluid field model is developed based on non-dimensional artificial neural networks (NDANNs) to provide an accurate and numerically efficient tool in AT control system design applications. A grow-and-trim procedure is proposed to identify critical non-dimensional inputs and optimize the network architecture. A hydraulic valve testing bench is designed and built to provide data for neural network model development. NDANN-based fluid force and flow rate estimators are established based on the experimental data. The NDANN models provide more accurate predictions of flow force and flow rates under broad operating conditions (such as different pressure drops and valve openings) compared with conventional lumped flow field models. Because of its non-dimensional characteristic, the NDANN fluid field estimator also exhibits good input-output scalability, which allows the NDANN model to estimate the fluid force and flow rate even when the operating condition parameter or design geometry parameters are outside the range of the training data. That is, although the operating/geometry parameter values are outside the range of the training sets, the non-dimensional values of the specific operating/geometry parameters are still within the training range. This feature makes the new model a potential candidate as a system design tool.


2011 ◽  
Vol 189-193 ◽  
pp. 2285-2288
Author(s):  
Wen Hua Jia ◽  
Chen Bo Yin ◽  
Guo Jin Jiang

Flow features, specially, flow rate, discharge coefficient and efflux angle under different operating conditions are numerically simulated, and the effects of shapes and the number of notches on them are analyzed. To simulate flow features, 3D models are developed as commercially available fluid flow models. Most construction machineries in different conditions require different actions. Thus, in order to be capable of different actions and exhibit good dynamic behavior, flow features should be achieved in designing an optimized proportional directional spool valve.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Jie Fei ◽  
He-Jun Li ◽  
Le-Hua Qi ◽  
Ye-Wei Fu ◽  
Xin-Tao Li

Carbon-fiber-reinforced paper-based friction material (CFRPF), as a new type of wet friction material for automatic transmission, was prepared by a paper-making process. The frictional response of CFRPF is highly complex under a set of dynamically variable operating conditions. To better understand the effect of operating factors (braking pressure, rotating speed, oil temperature, and oil flow rate) on friction stability of the material, tests were carried out using a single ingredient experiment and the Taguchi method. Experimental results show that the braking stability and the dynamic friction coefficient (μd) decrease as braking pressure, rotating speed, oil temperature, and oil flow rate increase. The influence of braking pressure on μd is largest among the four operating factors. μd declines gradually during the first 3000 repeated braking cycles and changes very little subsequently due to the surface topography change in friction material.


2020 ◽  
Vol 26 (3) ◽  
pp. 126-130
Author(s):  
Krasimir Kalev

AbstractA schematic diagram of a hydraulic drive system is provided to stabilize the speed of the working body by compensating for volumetric losses in the hydraulic motor. The diagram shows the inclusion of an originally developed self-adjusting choke whose flow rate in the inlet pressure change range tends to reverse - with increasing pressure the flow through it decreases. Dependent on the hydraulic characteristics of the hydraulic motor and the specific operating conditions.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1546
Author(s):  
Árpád Imre-Lucaci ◽  
Melinda Fogarasi ◽  
Florica Imre-Lucaci ◽  
Szabolcs Fogarasi

This paper presents a novel approach for the recovery of lead from waste cathode-ray tube (CRT) glass by applying a combined chemical-electrochemical process which allows the simultaneous recovery of Pb from waste CRT glass and electrochemical regeneration of the leaching agent. The optimal operating conditions were identified based on the influence of leaching agent concentration, recirculation flow rate and current density on the main technical performance indicators. The experimental results demonstrate that the process is the most efficient at 0.6 M acetic acid concentration, flow rate of 45 mL/min and current density of 4 mA/cm2. The mass balance data corresponding to the recycling of 10 kg/h waste CRT glass in the identified optimal operating conditions was used for the environmental assessment of the process. The General Effect Indices (GEIs), obtained through the Biwer Heinzle method for the input and output streams of the process, indicate that the developed recovery process not only achieve a complete recovery of lead but it is eco-friendly as well.


2013 ◽  
Vol 67 (10) ◽  
pp. 2141-2147 ◽  
Author(s):  
Patrick Atheba ◽  
Patrick Drogui ◽  
Brahima Seyhi ◽  
Didier Robert

The present work evaluates the potential of the photocatalysis (PC) process for the degradation of butylparaben (BPB). Relatively high treatment efficiency was achieved by comparison to photochemical process. Prior to photocatalytic degradation, adsorption (AD) of BPB occurred on the titanium dioxide (TiO2)-supported catalyst. AD was described by Langmuir isotherm (KL = 0.085 L g−1, qm = 4.77 mg g−1). The influence of angle of inclination of the reactor, pH, recirculation flow rate and initial concentration of BPB were investigated. The PC process applied under optimal operating conditions (recirculation flow rate of 0.15 L min−1, angle of inclination of 15°, pH = 7 and 5 mg L−1 of BPB) is able to oxidize 84.9–96.6% of BPB and to ensure around 38.7% of mineralization. The Langmuir–Hinshelwood kinetic model described well the photocatalytic oxidation of BPB (k = 7.02 mg L−1 h−1, K = 0.364 L mg−1).


2005 ◽  
Vol 127 (5) ◽  
pp. 1029-1037 ◽  
Author(s):  
L. O. Schunk ◽  
G. F. Nellis ◽  
J. M. Pfotenhauer

Growing interest in larger scale pulse tubes has focused attention on optimizing their thermodynamic efficiency. For Stirling-type pulse tubes, the performance is governed by the phase difference between the pressure and mass flow, a characteristic that can be conveniently adjusted through the use of inertance tubes. In this paper we present a model in which the inertance tube is divided into a large number of increments; each increment is represented by a resistance, compliance, and inertance. This model can include local variations along the inertance tube and is capable of predicting pressure, mass flow rate, and the phase between these quantities at any location in the inertance tube as well as in the attached reservoir. The model is verified through careful comparison with those quantities that can be easily and reliably measured; these include the pressure variations along the length of the inertance tube and the mass flow rate into the reservoir. These experimental quantities are shown to be in good agreement with the model’s predictions over a wide range of operating conditions. Design charts are subsequently generated using the model and are presented for various operating conditions in order to facilitate the design of inertance tubes for pulse tube refrigerators. These design charts enable the pulse tube designer to select an inertance tube geometry that achieves a desired phase shift for a given level of acoustic power.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Elham M. El-Zanati ◽  
Eman Farg ◽  
Esraa Taha ◽  
Ayman El-Guindi ◽  
Heba Abdallah

Abstract Multi-bore hollow fiber membranes were prepared through phase inversion spinning process using new locally designed spinnerets of various geometrical shapes. The spun cylindrical-like, rectangular or ribbon-like, and triangular-like are prepared, dried, and characterized by scanning electronic microscope. Fibers of circular (seven, five, and four bores) shape, rectangular of five bores, and triangular of three bores were chosen to study the effect of both geometrical configuration and the number of bores on the amorphous structure and the mechanical properties of the membranes. Membrane geometry, surface amorphous, and bore arrangements are very sensitive to the operating conditions, especially the extrusion and drawing rates. Three polymeric blends of different compositions are used to prepare multi-bore hollow fiber membranes. This study revealed that the blend composition of PES 16%, PVP 2%, PEG 2%, diethylene glycol 2%, and NMP 78% gives excellent mechanical properties. Optimization of the preparation conditions also developed, where the dope flow rate, the bore flow rate, and the air gap were 1.14 cm3 s−1, 1.1 cm3 s−1, and 0 cm, respectively. Furthermore, this study proved that the circular arrangement has high mechanical strength. The prepared seven-MBHF membranes were applied in the membrane distillation process, a solution of 35 g/l NaCl was used to test the membrane performance, and the achieved flux and rejection were 28.32 L/m2 h and 98.9%, respectively. This performance demonstrated that the prepared membrane in this way is suitable to compete with conventional reverse osmosis technology that uses single track hollow fibers.


Sign in / Sign up

Export Citation Format

Share Document