Prediction of Relative Motion and Probability of Contact Between FPSO and Shuttle Tanker in Tandem Offloading Operation

2003 ◽  
Vol 126 (3) ◽  
pp. 235-242 ◽  
Author(s):  
Haibo Chen ◽  
Torgeir Moan ◽  
Sverre Haver ◽  
Kjell Larsen

Excessive relative motions between Floating Production Storage Offloading Unit (FPSO), and tanker, which are termed as excessive surging and yawing events, are identified as the “failure prone situation” in tandem offloading. These events have contributed to the initiation of tanker drive-off in most collision incidents that happened in the North Sea in recent years. To estimate and reduce the probability of excessive surging and yawing events in tandem offloading, a simulation-based approach, which is based on a state-of-the-art time-domain simulation code SIMO, is presented in this paper. A typical North Sea FPSO and a DP shuttle tanker simulation models are setup in SIMO and calibrated by full-scale measurements. The simulated relative distance and relative heading between FPSO and tanker are analyzed by fitting their extreme values into statistical models which give out probabilities of excessive surging and yawing events. Sensitivity studies are performed to pinpoint contributions from various technical and operational factors. Measures to minimize the occurrence of excessive surging and yawing events are identified in design and operational perspectives.

Author(s):  
Haibo Chen ◽  
Torgeir Moan ◽  
Sverre Haver ◽  
Kjell Larsen

Tandem offloading safety between FPSO and shuttle tanker is under concern. A few collisions between the two vessels have happened in the North Sea in recent years. In these incidents, excessive relative motions (termed as surging and yawing in this paper) between FPSO and tanker are identified as “failure prone situations” which have contributed to the initiation of most collision incidents. To quantitatively assess the probability of surging and yawing events, and more importantly, to effectively reduce their occurrence in tandem offloading operation, we present a simulation-based approach in this paper, which is carried out by a state-of-the-art time-domain simulation code SIMO. The SIMO simulation models are setup and calibrated for a typical North Sea purpose-built FPSO and a DP shuttle tanker. This 2-vessel system motion in tandem offloading is simulated. The simulated relative distance and relative heading between FPSO and tanker are analyzed by fitting their extreme values into statistical models. This gives out probabilities of surging and yawing events. Sensitivity studies are performed to analyze contributions from various technical and operational factors. Measures to minimize the occurrence of surging and yawing from design and operational point of view are proposed.


2007 ◽  
Vol 64 (4) ◽  
pp. 818-824 ◽  
Author(s):  
Martin A. Pastoors ◽  
Jan Jaap Poos ◽  
Sarah B. M. Kraak ◽  
Marcel A. M. Machiels

Abstract Pastoors, M. A., Poos, J. J., Kraak, S. B. M., and Machiels, M. A. M. 2007. Validating management simulation models and implications for communicating results to stakeholders. – ICES Journal of Marine Science, 64: 818–824. Simulations of management plans generally aim to demonstrate the robustness of the plans to assumptions about population dynamics and fleet dynamics. Such modelling is characterized by specification of an operating model (OM) representing the underlying truth and a management procedure that mimics the process of acquiring knowledge, formulating management decisions, and implementing those decisions. We employ such a model to evaluate a management plan for North Sea flatfish proposed by the North Sea Regional Advisory Council in May 2005. Focus is on the construction and conditioning of OMs, key requirements for such simulations. We describe the process of setting up and validating OMs along with its effects on the ability to communicate the results to the stakeholders. We conclude that there is tension between the level of detail required by stakeholders and the level of detail that can be provided. In communicating the results of simulations, it is necessary to make very clear how OMs depend on past perceptions of stock dynamics.


2020 ◽  
Vol 20 (19) ◽  
pp. 11399-11422
Author(s):  
Jan Eiof Jonson ◽  
Michael Gauss ◽  
Michael Schulz ◽  
Jukka-Pekka Jalkanen ◽  
Hilde Fagerli

Abstract. Ship emissions constitute a large, and so far poorly regulated, source of air pollution. Emissions are mainly clustered along major ship routes both in open seas and close to densely populated shorelines. Major air pollutants emitted include sulfur dioxide, NOx, and primary particles. Sulfur and NOx are both major contributors to the formation of secondary fine particles (PM2.5) and to acidification and eutrophication. In addition, NOx is a major precursor for ground-level ozone. In this paper, we quantify the contributions from international shipping to European air pollution levels and depositions. This study is based on global and regional model calculations. The model runs are made with meteorology and emission data representative of the year 2017 after the tightening of the SECA (sulfur emission control area) regulations in 2015 but before the global sulfur cap that came into force in 2020. The ship emissions have been derived using ship positioning data. We have also made model runs reducing sulfur emissions by 80 % corresponding to the 2020 requirements. This study is based on model sensitivity studies perturbing emissions from different sea areas: the northern European SECA in the North Sea and the Baltic Sea, the Mediterranean Sea and the Black Sea, the Atlantic Ocean close to Europe, shipping in the rest of the world, and finally all global ship emissions together. Sensitivity studies have also been made setting lower bounds on the effects of ship plumes on ozone formation. Both global- and regional-scale calculations show that for PM2.5 and depositions of oxidised nitrogen and sulfur, the effects of ship emissions are much larger when emissions occur close to the shore than at open seas. In many coastal countries, calculations show that shipping is responsible for 10 % or more of the controllable PM2.5 concentrations and depositions of oxidised nitrogen and sulfur. With few exceptions, the results from the global and regional calculations are similar. Our calculations show that substantial reductions in the contributions from ship emissions to PM2.5 concentrations and to depositions of sulfur can be expected in European coastal regions as a result of the implementation of a 0.5 % worldwide limit of the sulfur content in marine fuels from 2020. For countries bordering the North Sea and Baltic Sea SECA, low sulfur emissions have already resulted in marked reductions in PM2.5 from shipping before 2020. For ozone, the lifetime in the atmosphere is much longer than for PM2.5, and the potential for ozone formation is much larger in otherwise pristine environments. We calculate considerable contributions from open sea shipping. As a result, we find that the largest contributions to ozone in several regions and countries in Europe are from sea areas well outside European waters.


1989 ◽  
Vol 1989 (1) ◽  
pp. 525-532 ◽  
Author(s):  
N. Hurford ◽  
I. Buchanan

ABSTRACT This report presents the results of a trial to study the behavior of Forties crude oil spilled at sea. The trial involved the release of approximately 20 metric tons (t) of Forties crude oil and monitoring the movement, spreading, and dispersion of the slick over a four-day period. Surface samples were collected at regular intervals to determine changes in the physical properties of the oil. The implications of the results for the development of oil spill simulation models are discussed.


Sign in / Sign up

Export Citation Format

Share Document