Surface Characterization Using Wavelet Theory and Confocal Laser Scanning Microscopy

2005 ◽  
Vol 127 (2) ◽  
pp. 394-404 ◽  
Author(s):  
Chengqing Yuan ◽  
Zhongxiao Peng ◽  
Xinping Yan

Surface characterization, particularly roughness analysis, is very important for a wide range of applications including wear assessment. This paper proposes a set of methods and techniques to acquire appropriate images using confocal laser scanning microscopy, to separate roughness, waviness, and form using wavelet theory, and to characterize surface roughness for engineering surfaces and surfaces of small particles. Two application examples on engineering surfaces and wear particles have been presented in the paper to demonstrate that the method developed in this study can be used to measure surface roughness reliably and precisely. A guide on how to determine the iris size, step size, and objective lens has been scientifically provided according to theoretical analysis and experimental results.

2008 ◽  
Vol 32 ◽  
pp. 173-179 ◽  
Author(s):  
Zhong Xiao Peng ◽  
Steven Tomovich

Quantitative surface measurement is an important field in many applications including materials science and engineering quality control. A non-destructive and versatile technique for quantifying surface roughness in 3D is Confocal Laser Scanning Microscopy (CLSM). However, this technique has not been widely accepted to use for quantitative surface measurements due to limited work on it. The project has researched the suitability of using the system for surface characterization and appropriate settings for image acquisition for quantitative surface analysis. Based on the above fundamental work, this study has developed and presented a comprehensive approach of using the system for quantitative surface characterization through image processing, 3D image construction, image stitching and numerical image analysis. The surface characterization results presented in the paper have demonstrated that the system can be used to accurately measure surface roughness of engineering surfaces.


2018 ◽  
Vol 760 ◽  
pp. 245-250 ◽  
Author(s):  
Jitka Krejsová ◽  
Magdaléna Doleželová ◽  
Alena Vimmrová

The gypsum mortars with different types of aggregate were studied. The surface roughness of fine aggregates and the fracture surface roughness were evaluated by a confocal laser scanning microscopy. Four gypsum mortars and one gypsum paste were tested. The results from the confocal laser scanning microscopy (CLSM) are compared with the pictures of grain surface taken by a scanning electron microscopy (SEM) and both methods seem to be appropriate for surface evaluation. The influence of the surface aggregate roughness on some gypsum mortar properties is demonstrated.


2018 ◽  
Author(s):  
M. Simard-Normandin ◽  
R. Rahman

Abstract This paper explains the CLSM technique and presents surface roughness measurement data from several groups of known authentic and suspect counterfeit parts. Surface roughness is an important characteristic of plastic encapsulated or metal lidded parts because counterfeit parts are often blacktopped or re-polished and remarked.


2012 ◽  
Vol 11 (3) ◽  
pp. 669-674 ◽  
Author(s):  
Szabolcs Szilveszter ◽  
Botond Raduly ◽  
Szilard Bucs ◽  
Beata Abraham ◽  
Szabolcs Lanyi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document