Mechanics of Bimaterial Interface: Shear Deformable Split Bilayer Beam Theory and Fracture

2005 ◽  
Vol 72 (5) ◽  
pp. 674-682 ◽  
Author(s):  
Jialai Wang ◽  
Pizhong Qiao

A novel split beam model is introduced to account for the local effects at the crack tip of bi-material interface by modeling a bi-layer composite beam as two separate shear deformable beams bonded perfectly along their interface. In comparisons with analytical two-dimensional continuum solutions and finite element analysis, better agreements are achieved for the present model, which is capable of capturing the local deformation at the crack tip in contrast to the conventional composite beam theory. New solutions of two important issues of cracked beams, i.e., local buckling and interface fracture, are then presented based on the proposed split bi-layer shear deformable beam model. Local buckling load of a delaminated beam considering the root rotation at the delamination tip is first obtained. By considering the root rotation at the crack tip, the buckling load is lower than the existing solution neglecting the local deformation at the delamination tip. New expressions of energy release rate and stress intensity factor considering the transverse shear effect are obtained by the solution of local deformation based on the novel split beam model, of which several new terms associated with the transverse shear force are present, and they represent an improved solution compared to the one from the classical beam model. Two specimens are analyzed with the present model, and the corresponding refined fracture parameters are provided, which are in better agreement with finite element analysis compared to the available classical solutions.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arnab Bose ◽  
Prabhakar Sathujoda ◽  
Giacomo Canale

Abstract The present work aims to analyze the natural and whirl frequencies of a slant-cracked functionally graded rotor-bearing system using finite element analysis for the flexural vibrations. The functionally graded shaft is modelled using two nodded beam elements formulated using the Timoshenko beam theory. The flexibility matrix of a slant-cracked functionally graded shaft element has been derived using fracture mechanics concepts, which is further used to develop the stiffness matrix of a cracked element. Material properties are temperature and position-dependent and graded in a radial direction following power-law gradation. A Python code has been developed to carry out the complete finite element analysis to determine the Eigenvalues and Eigenvectors of a slant-cracked rotor subjected to different thermal gradients. The analysis investigates and further reveals significant effect of the power-law index and thermal gradients on the local flexibility coefficients of slant-cracked element and whirl natural frequencies of the cracked functionally graded rotor system.


2014 ◽  
Vol 969 ◽  
pp. 97-100 ◽  
Author(s):  
Eva Kormaníková

The paper deals with numerical modeling of delamination of laminate plate consists of unidirectional fiber reinforced layers. The methodology adopts the first-order shear laminate plate theory and fracture and contact mechanics. There are described sublaminate modeling and delamination modeling by the help of finite element analysis. With the interface modeling there is calculated the energy release rate along the lamination front. Numerical results are given for mixed mode delamination problems by implementing the method in a 2D finite analysis, which utilizes shear deformable plate elements and interface elements. Numerical example is done by the commercial ANSYS code.


1998 ◽  
Vol 120 (4) ◽  
pp. 325-333 ◽  
Author(s):  
B. K. Koh ◽  
G. J. Park

A bellows is a component in piping systems which absorbs mechanical deformation with flexibility. Its geometry is an axially symmetric shell which consists of two toroidal shells and one annular plate or conical shell. In order to analyze the bellows, this study presents the finite element analysis using a conical frustum shell element. A finite element analysis program is developed to analyze various bellows. The formula for calculating the natural frequency of bellows is made by the simple beam theory. The formula for fatigue life is also derived by experiments. A shape optimal design problem is formulated using multiple objective optimization. The multiple objective functions are transformed to a scalar function with weighting factors. The stiffness, strength, and specified stiffness are considered as the multiple objective function. The formulation has inequality constraints imposed on the natural frequencies, the fatigue limit, and the manufacturing conditions. Geometric parameters of bellows are the design variables. The recursive quadratic programming algorithm is utilized to solve the problem.


Sign in / Sign up

Export Citation Format

Share Document