Buoyancy-Induced Flow in a Heated Rotating Cavity

2004 ◽  
Vol 128 (1) ◽  
pp. 128-134 ◽  
Author(s):  
J. Michael Owen ◽  
Jonathan Powell

Experimental measurements were made in a rotating-cavity rig with an axial throughflow of cooling air at the center of the cavity, simulating the conditions that occur between corotating compressor disks of a gas-turbine engine. One of the disks in the rig was heated, and the other rotating surfaces were quasi-adiabatic; the temperature difference between the heated disk and the cooling air was between 40 and 100°C. Tests were conducted for axial Reynolds numbers, Rez, of the cooling air between 1.4×103 and 5×104, and for rotational Reynolds numbers, Reϕ, between 4×105 and 3.2×106. Velocity measurements inside the rotating cavity were made using laser Doppler anemometry, and temperatures and heat flux measurements on the heated disk were made using thermocouples and fluxmeters. The velocity measurements were consistent with a three-dimensional, unsteady, buoyancy-induced flow in which there was a multicell structure comprising one, two, or three pairs of cyclonic and anticyclonic vortices. The core of fluid between the boundary layers on the disks rotated at a slower speed than the disks, as found by other experimenters. At the smaller values of Rez, the radial distribution and magnitude of the local Nusselt numbers, Nu, were consistent with buoyancy-induced flow. At the larger values of Rez, the distribution of Nu changed, and its magnitude increased, suggesting the dominance of the axial throughflow.

Author(s):  
J. Michael Owen ◽  
Jonathan Powell

Experimental measurements were made in a rotating-cavity rig with an axial throughflow of cooling air at the centre of the cavity, simulating the conditions that occur between corotating compressor discs of a gas-turbine engine. One of the discs in the rig was heated, and the other rotating surfaces were quasi-adiabatic; the temperature difference, between the heated disc and the cooling air was between 40 and 100 °C. Tests were conducted for axial Reynolds numbers, Rez, of the cooling air between 1.4 × 103 and 5 × 104, and for rotational Reynolds numbers, Reφ, between 4 × 105 and 3.2 × 106. Velocity measurements inside the rotating cavity were made using LDA, and temperatures and heat flux measurements on the heated disc were made using thermocouples and fluxmeters. The velocity measurements were consistent with a 3D, unsteady, buoyancy-induced flow in which there was a multicell structure comprising one, two or three pairs of cyclonic and anti-cyclonic vortices. The core of fluid between the boundary layers on the discs rotated at a slower speed than the discs, as found by other experimenters. At the smaller values of Rez, the radial distribution and magnitude of the local Nusselt numbers, Nu, were consistent with buoyancy-induced flow. At the larger values of Rez, the distribution of Nu changed, and its magnitude increased, suggesting the dominance of the axial throughflow.


Author(s):  
Abdul A. Jaafar ◽  
Fariborz Motallebi ◽  
Michael Wilson ◽  
J. Michael Owen

In this paper, new experimental results are presented for the flow in a co-rotating disc system with a rotating inner cylinder and a stationary stepped outer casing. The configuration is based on a turbine disc-cooling system used in a gas turbine engine. One of the rotating discs can be heated, and cooling air is introduced through discrete holes angled inward at the periphery of this disc. The cooling air leaves the system through axial clearances between the discs and the outer casing. Some features of computed flows, and both measured and computed heat transfer, were reported previously for this system. New velocity measurements, obtained using Laser Doppler Anemometry, are compared with results from axisymmetric, steady, turbulent flow computations obtained using a low-Reynolds-number k-ε turbulence model. The measurements and computations show that the tangential component of velocity is invariant with axial location in much of the cavity, and the data suggest that Rankine (combined free and forced) vortex flow occurs. The computations fail to reproduce this behaviour, and there are differences between measured and computed details of secondary flow recirculations. Possible reasons for these discrepancies, and their importance for the prediction of associated heat transfer, are discussed.


2007 ◽  
Vol 129 (4) ◽  
pp. 893-900 ◽  
Author(s):  
J. Michael Owen ◽  
Hans Abrahamsson ◽  
Klas Lindblad

Buoyancy-induced flow can occur in the cavity between the co-rotating compressor disks in gas-turbine engines, where the Rayleigh numbers can be in excess of 1012. In most cases the cavity is open at the center, and an axial throughflow of cooling air can interact with the buoyancy-induced flow between the disks. Such flows can be modeled, computationally and experimentally, by a simple rotating cavity with an axial flow of air. This paper describes work conducted as part of ICAS-GT, a major European research project. Experimental measurements of velocity, temperature, and heat transfer were obtained on a purpose-built experimental rig, and these results have been reported in an earlier paper. In addition, 3D unsteady CFD computations were carried out using a commercial code (Fluent) and a RNG k‐ε turbulence model. The computed velocity vectors and contours of temperature reveal a flow structure in which, as seen by previous experimenters, “radial arms” transport cold air from the center to the periphery of the cavity, and regions of cyclonic and anticyclonic circulation are formed on either side of each arm. The computed radial distribution of the tangential velocity agrees reasonably well with the measurements in two of the three cases considered here. In the third case, the computations significantly overpredict the measurements; the reason for this is not understood. The computed and measured values of Nu for the heated disk show qualitatively similar radial distributions, with high values near the center and the periphery. In two of the cases, the quantitative agreement is reasonably good; in the third case, the computations significantly underpredict the measured values.


1992 ◽  
Vol 114 (1) ◽  
pp. 237-246 ◽  
Author(s):  
P. R. Farthing ◽  
C. A. Long ◽  
J. M. Owen ◽  
J. R. Pincombe

A rotating cavity with an axial throughflow of cooling air is used to provide a simplified model for the flow that occurs between adjacent corotating compressor disks inside a gas turbine engine. Flow visualization and laser-Doppler anemometry are employed to study the flow structure inside isothermal and heated rotating cavities for a wide range of axial-gap ratios, G, rotational Reynolds number, Reφ, axial Reynolds numbers, Rez, and temperature distributions. For the isothermal case, the superposed axial flow of air generates a powerful toroidal vortex inside cavities with large gap ratios (G ≳ 0.400) and weak counterrotating toroidal vortices for cavities with small gap ratios. Depending on the gap ratio and the Rossby number, ε (where ε ∝ Rez/Reφ), axisymmetric and nonaxisymmetric vortex breakdown can occur, but circulation inside the cavity becomes weaker as e is reduced. For the case where one or both disks of the cavity are heated, the flow becomes nonaxisymmetric: Cold air enters the cavity in a “radial arm” on either side of which is a vortex. The cyclonic and anticyclonic circulations inside the two vortices are presumed to create the circumferential pressure gradient necessary for the air to enter the cavity (in the radial arm) and to leave (in Ekman layers on the disks). The core of fluid between the Ekman layers precesses with an angular speed close to that of the disks, and vortex breakdown appears to reduce the relative speed of precession.


1990 ◽  
Author(s):  
P. R. Farthing ◽  
C. A. Long ◽  
J. M. Owen ◽  
J. R. Pincombe

A rotating cavity with an axial throughflow of cooling air is used to provide a simplified model for the flow that occurs between adjacent corotating compressor discs inside a gas-turbine engine. Flow visualization and laser-Doppler anemometry are employed to study the flow structure inside isothermal and heated rotating cavities for a wide range of axial-gap ratios. G. rotational. Reynolds numbers, Reφ, axial Reynolds numbers, Rez, and temperature distributions. For the isothermal case, the superposed axial flow of air generates a powerful toroidal vortex inside cavities with large gap ratios (G > 0.400) and weak counter-rotating toroidal vortices for cavities with small gap ratios. Depending on the gap ratio and the Rossby number, ε (where ε ∝ Rez/Reφ), axisymmetric and nonaxisymmetric vortex breakdown can occur, but circulation inside the cavity becomes weaker as ε is reduced. For the case where one or both discs of the cavity are heated, the flow becomes nonaxisymmetric: cold air enters the cavity in a “radial arm” on either side of which is a vortex. The cyclonic and anti-cyclonic circulations inside the two vortices are presumed to create the circumferential pressure gradient necessary for the air to enter the cavity (in the radial arm) and to leave (in Ekman layers on the discs). The core of fluid between the Ekman layers precesses with an angular speed close to that of the discs, and vortex breakdown appears to reduce the relative speed of precession.


2002 ◽  
Vol 450 ◽  
pp. 67-95 ◽  
Author(s):  
CH. BLOHM ◽  
H. C. KUHLMANN

The incompressible fluid flow in a rectangular container driven by two facing sidewalls which move steadily in anti-parallel directions is investigated experimentally for Reynolds numbers up to 1200. The moving sidewalls are realized by two rotating cylinders of large radii tightly closing the cavity. The distance between the moving walls relative to the height of the cavity (aspect ratio) is Γ = 1.96. Laser-Doppler and hot-film techniques are employed to measure steady and time-dependent vortex flows. Beyond a first threshold robust, steady, three-dimensional cells bifurcate supercritically out of the basic flow state. Through a further instability the cellular flow becomes unstable to oscillations in the form of standing waves with the same wavelength as the underlying cellular flow. If both sidewalls move with the same velocity (symmetrical driving), the oscillatory instability is found to be tricritical. The dependence on two sidewall Reynolds numbers of the ranges of existence of steady and oscillatory cellular flows is explored. Flow symmetries and quantitative velocity measurements are presented for representative cases.


Author(s):  
Richard W. Jackson ◽  
Dario Luberti ◽  
Hui Tang ◽  
Oliver J. Pountney ◽  
James A. Scobie ◽  
...  

Abstract The flow inside cavities between co-rotating compressor discs of aero-engines is driven by buoyancy, with Grashof numbers exceeding 1013. This phenomenon creates a conjugate problem: the Nusselt numbers depend on the radial temperature distribution of the discs, and the disc temperatures depend on the Nusselt numbers. Furthermore, Coriolis forces in the rotating fluid generate cyclonic and anti-cyclonic circulations inside the cavity. Such flows are three-dimensional, unsteady and unstable, and it is a challenge to compute and measure the heat transfer from the discs to the axial throughflow in the compressor. In this paper, Nusselt numbers are experimentally determined from measurements of steady-state temperatures on the surfaces of both discs in a rotating cavity of the Bath Compressor-Cavity Rig. The data are collected over a range of engine-representative parameters and are the first results from a new experimental facility specifically designed to investigate buoyancy-induced flow. The radial distributions of disc temperature were collected under carefully-controlled thermal boundary conditions appropriate for analysis using a Bayesian model combined with the equations for a circular fin. The Owen-Tang buoyancy model has been used to compare predicted radial distributions of disc temperatures and Nusselt numbers with some of the experimentally determined values, taking account of radiation between the interior surfaces of the cavity. The experiments show that the average Nusselt numbers on the disc increase as the buoyancy forces increase. At high rotational speeds the temperature rise in the core, created by compressibility effects in the air, attenuates the heat transfer and there is a critical rotational Reynolds number for which the Nusselt number is a maximum. In the cavity, there is an inner region dominated by forced convection and an outer region dominated by buoyancy-induced flow. The inner region is a mixing region, in which entrained cold throughflow encounters hot flow from the Ekman layers on the discs. Consequently, the Nusselt numbers on the downstream disc in the inner region tend to be higher than those on the upstream disc.


Sign in / Sign up

Export Citation Format

Share Document