Flow and Heat Transfer in a Rotating Cavity With a Stationary Stepped Casing

Author(s):  
Abdul A. Jaafar ◽  
Fariborz Motallebi ◽  
Michael Wilson ◽  
J. Michael Owen

In this paper, new experimental results are presented for the flow in a co-rotating disc system with a rotating inner cylinder and a stationary stepped outer casing. The configuration is based on a turbine disc-cooling system used in a gas turbine engine. One of the rotating discs can be heated, and cooling air is introduced through discrete holes angled inward at the periphery of this disc. The cooling air leaves the system through axial clearances between the discs and the outer casing. Some features of computed flows, and both measured and computed heat transfer, were reported previously for this system. New velocity measurements, obtained using Laser Doppler Anemometry, are compared with results from axisymmetric, steady, turbulent flow computations obtained using a low-Reynolds-number k-ε turbulence model. The measurements and computations show that the tangential component of velocity is invariant with axial location in much of the cavity, and the data suggest that Rankine (combined free and forced) vortex flow occurs. The computations fail to reproduce this behaviour, and there are differences between measured and computed details of secondary flow recirculations. Possible reasons for these discrepancies, and their importance for the prediction of associated heat transfer, are discussed.

Author(s):  
Robert Pilbrow ◽  
Hasan Karabay ◽  
Michael Wilson ◽  
J. Michael Owen

In most gas turbines, blade-cooling air is supplied from stationary pre-swirl nozzles that swirl the air in the direction of rotation of the turbine disc. In the “cover-plate” system, the pre-swirl nozzles are located radially inward of the blade-cooling holes in the disc, and the swirling air flows radially outwards in the cavity between the disc and a cover-plate attached to it. In this combined computational and experimental paper, an axisymmetric elliptic solver, incorporating the Launder-Sharma and the Morse low-Reynolds-number k-ε turbulence models, is used to compute the flow and heat transfer. The computed Nusselt numbers for the heated “turbine disc” are compared with measured values obtained from a rotating-disc rig. Comparisons are presented, for a wide range of coolant flow rates, for rotational Reynolds numbers in the range 0.5 × 106 to 1.5 × 106, and for 0.9 < βp < 3.1, where βp is the pre-swirl ratio (or ratio of the tangential component of velocity of the cooling air at inlet to the system to that of the disc). Agreement between the computed and measured Nusselt numbers is reasonably good, particularly at the larger Reynolds numbers. A simplified numerical simulation is also conducted to show the effect of the swirl ratio and the other flow parameters on the flow and heat transfer in the cover-plate system.


Author(s):  
Peter D. Smout ◽  
John W. Chew ◽  
Peter R. N. Childs

The Internal Cooling Air Systems for Gas Turbines (ICAS-GT) research programme, sponsored by the European Commission, ran from January 1998 to December 2000, and was undertaken by a consortium of ten gas turbine manufacturing companies and four universities. Research was concentrated in five discrete but related areas of the air system including turbine rim seals, rotating cavity flow and heat transfer, and turbine pre-swirl system effectiveness. In each case, experiments were conducted to extend the database of pressure, temperature, flow and heat transfer measurements to engine representative non-dimensional conditions. The data was used to develop correlations, and to validate CFD and FE calculation methods, for internal fluid flow and heat transfer. This paper summarises the outcome of the project by presenting a sample of experimental results from each technical work package. Examples of the associated CFD calculations are included to illustrate the progress made in developing validated tools for predicting rotating cavity flow and heat transfer over an engine representative range of flow conditions.


1992 ◽  
Vol 114 (1) ◽  
pp. 237-246 ◽  
Author(s):  
P. R. Farthing ◽  
C. A. Long ◽  
J. M. Owen ◽  
J. R. Pincombe

A rotating cavity with an axial throughflow of cooling air is used to provide a simplified model for the flow that occurs between adjacent corotating compressor disks inside a gas turbine engine. Flow visualization and laser-Doppler anemometry are employed to study the flow structure inside isothermal and heated rotating cavities for a wide range of axial-gap ratios, G, rotational Reynolds number, Reφ, axial Reynolds numbers, Rez, and temperature distributions. For the isothermal case, the superposed axial flow of air generates a powerful toroidal vortex inside cavities with large gap ratios (G ≳ 0.400) and weak counterrotating toroidal vortices for cavities with small gap ratios. Depending on the gap ratio and the Rossby number, ε (where ε ∝ Rez/Reφ), axisymmetric and nonaxisymmetric vortex breakdown can occur, but circulation inside the cavity becomes weaker as e is reduced. For the case where one or both disks of the cavity are heated, the flow becomes nonaxisymmetric: Cold air enters the cavity in a “radial arm” on either side of which is a vortex. The cyclonic and anticyclonic circulations inside the two vortices are presumed to create the circumferential pressure gradient necessary for the air to enter the cavity (in the radial arm) and to leave (in Ekman layers on the disks). The core of fluid between the Ekman layers precesses with an angular speed close to that of the disks, and vortex breakdown appears to reduce the relative speed of precession.


1998 ◽  
Vol 120 (4) ◽  
pp. 818-823 ◽  
Author(s):  
I. Mirzaee ◽  
X. Gan ◽  
M. Wilson ◽  
J. M. Owen

This paper describes a combined computational and experimental study of the heat transfer in a rotating cavity with a peripheral inflow and outflow of cooling air for a range of rotational speeds and flow rates. Measurements are made in a purpose-built rig, with one of the two rotating discs heated, and computations are conducted using an axisymmetric elliptic solver incorporating the Launder-Sharma low-Reynolds-number k–ε turbulence model. Measured values of the tangential component of velocity, Vπ, exhibit Rankine-vortex behaviour which is not accurately modelled by the computations. Both computed and measured values of the radial component of velocity, Vr, confirm the recirculating nature of the flow. In the outflow region, agreement between computed and measured values of Vr is mainly good, but in the inflow region the computations exhibit a “peaky” distribution which is not shown by the measurements. The measured and computed Nusselt numbers show that Nu increases as the magnitudes of the flow rate and the rotational speed increase. The computed Nusselt numbers (allowing for the effects of conduction through and radiation to the unheated disk) reproduce the measured trends but tend to underestimate the experimental values at the larger radii.


Author(s):  
Hasan Karabay ◽  
Jian-Xin Chen ◽  
Robert Pilbrow ◽  
Michael Wilson ◽  
J. Michael Owen

This paper describes a combined theoretical, computational and experimental study of the flow in an adiabatic pre-swirl rotor-stator system. Pre-swirl cooling air, supplied through nozzles in the stator, flows radially outward, in the rotating cavity between the rotating disc and a cover-plate attached to it, leaving the system through blade-cooling holes in the disc. An axisymmetric elliptic solver, incorporating the Launder-Sharma low-Reynolds-number k-ε turbulence model, is used to compute the flow. An LDA system is used to measure the tangential component of velocity, Vϕ, in the rotating cavity of a purpose-built rotating-disc rig. For rotational Reynolds numbers up to 1.2 × 106 and pre-swirl ratios up to 2.5, agreement between the computed and measured values of Vϕ is mainly very good, and the results confirm that free-vortex flow occurs throughout most of the rotating cavity. Computed values of the pre-swirl effectiveness (or the nondimensional temperature difference between the pre-swirl and blade-cooling air) agree closely with theoretical values obtained from a thermodynamic analysis of an adiabatic system.


2004 ◽  
Vol 128 (1) ◽  
pp. 128-134 ◽  
Author(s):  
J. Michael Owen ◽  
Jonathan Powell

Experimental measurements were made in a rotating-cavity rig with an axial throughflow of cooling air at the center of the cavity, simulating the conditions that occur between corotating compressor disks of a gas-turbine engine. One of the disks in the rig was heated, and the other rotating surfaces were quasi-adiabatic; the temperature difference between the heated disk and the cooling air was between 40 and 100°C. Tests were conducted for axial Reynolds numbers, Rez, of the cooling air between 1.4×103 and 5×104, and for rotational Reynolds numbers, Reϕ, between 4×105 and 3.2×106. Velocity measurements inside the rotating cavity were made using laser Doppler anemometry, and temperatures and heat flux measurements on the heated disk were made using thermocouples and fluxmeters. The velocity measurements were consistent with a three-dimensional, unsteady, buoyancy-induced flow in which there was a multicell structure comprising one, two, or three pairs of cyclonic and anticyclonic vortices. The core of fluid between the boundary layers on the disks rotated at a slower speed than the disks, as found by other experimenters. At the smaller values of Rez, the radial distribution and magnitude of the local Nusselt numbers, Nu, were consistent with buoyancy-induced flow. At the larger values of Rez, the distribution of Nu changed, and its magnitude increased, suggesting the dominance of the axial throughflow.


Author(s):  
Iraj Mirzaee ◽  
Xiaopeng Gan ◽  
Michael Wilson ◽  
J. Michael Owen

This paper describes a combined computational and experimental study of the heat transfer in a rotating cavity with a peripheral inflow and outflow of cooling air for a range of rotational speeds and flow rates. Measurements are made in a purpose-built rig, with one of the two rotating discs heated, and computations are conducted using an axisymmetric elliptic solver incorporating the Launder-Sharma low-Reynolds-number k-ε turbulence model. Measured values of the tangential component of velocity, Vϕ, exhibit Rankine-vortex behaviour which is not accurately modelled by the computations. Both computed and measured values of the radial component of velocity, Vr, confirm the recirculating nature of the flow. In the outflow region, agreement between computed and measured values of Vr is mainly good, but in the inflow region the computations exhibit a “peaky” distribution which is not shown by the measurements. The measured and computed Nusselt numbers show that Nu increases as the magnitudes of the flow rate and the rotational speed increase. The computed Nusselt numbers (allowing for the effects of conduction through and radiation to the unhealed disc) reproduce the measured trends but tend to underestimate the experimental values at the larger radii.


Author(s):  
Iraj Mirzaee ◽  
Paul Quinn ◽  
Michael Wilson ◽  
J. Michael Owen

In the system considered here, corotating “turbine” discs are cooled by air supplied at the periphery of the system. The system comprises two corotating discs, connected by a rotating cylindrical hub and shrouded by a stepped, stationary cylindrical outer casing. Cooling air enters the system through holes in the periphery of one disc, and leaves through the clearances between the outer casing and the discs. The paper describes a combined computational and experimental study of the heat transfer in the above system. In the experiments, one rotating disc is heated, the hub and outer casing are insulated, and the other disc is quasi-adiabatic. Thermocouples and fluxmeters attached to the heated disc enable the Nusselt numbers, Nu, to be determined for a wide range of rotational speeds and coolant flow rates. Computations are carried out using an axisymmetric elliptic solver incorporating the Launder-Sharma low-Reynolds-number k-ε turbulence model. The flow structure is shown to be complex and depends strongly on the so-called turbulent flow parameter, λT, which incorporates both rotational speed and flow rate. For a given value of λT, the computations show that Nu increases as Reϕ, the rotational Reynolds number, increases. Despite the complexity of the flow, the agreement between the computed and measured Nusselt numbers is reasonably good.


1999 ◽  
Vol 121 (1) ◽  
pp. 160-166 ◽  
Author(s):  
H. Karabay ◽  
J.-X. Chen ◽  
R. Pilbrow ◽  
M. Wilson ◽  
J. M. Owen

This paper describes a combined theoretical, computational, and experimental study of the flow in an adiabatic preswirl rotor–stator system. Preswirl cooling air, supplied through nozzles in the stator, flows radially outward, in the rotating cavity between the rotating disk and a cover-plate attached to it, leaving the system through blade-cooling holes in the disk. An axisymmetric elliptic solver, incorporating the Launder–Sharma low-Reynolds-number k–ε turbulence model, is used to compute the flow. An LDA system is used to measure the tangential component of velocity, Vφ, in the rotating cavity of a purpose-built rotating-disc rig. For rotational Reynolds numbers up to 1.2 × 106 and preswirl ratios up to 2.5, agreement between the computed and measured values of Vφ is mainly very good, and the results confirm that free-vortex flow occurs in most of the rotating cavity. Computed values of the preswirl effectiveness (or the nondimensional temperature difference between the preswirl and blade-cooling air) agree closely with theoretical values obtained from a thermodynamic analysis of an adiabatic system.


Sign in / Sign up

Export Citation Format

Share Document