scholarly journals Evaluation of an Alkaline Fuel Cell for Multifuel System

2005 ◽  
Vol 2 (4) ◽  
pp. 234-237 ◽  
Author(s):  
A. Verma ◽  
A. K. Jha ◽  
S. Basu

The performance of an alkaline fuel cell (AFC) is investigated using three different fuels, e.g., methanol, ethanol, and sodium borohydride. Pt∕C∕Ni was used as anode, whereas MnO2∕C∕Ni was used as standard (Electro-Chem-Technic, UK) cathode for all the fuels. Fresh mixture of electrolyte, potassium hydroxide (5M), and fuel (2M) was fed to AFC and withdrawn at a rate of 1ml∕min. The anode was prepared by dispersing platinum and activated carbon in Nafion® (DuPont USA) dispersion and placing it onto a carbon paper (Lydall, USA). Finally prepared anode material was pressed onto Ni mesh and sintered to produce the required anode. The maximum power density of 16.5mW∕cm2 is obtained at 28mA∕cm2 of current density for sodium borohydride at 25°C, whereas methanol produces 31.5mW∕cm2 of maximum power density at 44mA∕cm2 of current density at 60°C. The results obtained showed that the AFC could accept multifuels.

Author(s):  
A. Verma ◽  
A. K. Jha ◽  
S. Basu

The performance of an alkaline fuel cell is investigated using three different fuels, e g., methanol, ethanol and sodium borohydride. Pt/C/Ni was used as anode whereas Mn/C/Ni was used as standard (Electro-Chem-Technic, UK) cathode for all the fuels. Thus, the alkaline fuel cell is used for multi-fuel system. Fresh mixture of electrolyte, potassium hydroxide (5M), and fuel (2M) was fed to and withdrawn from the AFC at a rate of 1 ml/min. The anode was prepared by dispersing platinum and activated carbon in Nafion® (DuPont USA) dispersion and placing it onto a carbon paper (Lydall, USA). Finally prepared anode sheet was pressed onto Ni mesh and sintered to produce the required anode. The maximum power density of 16.5 mW/cm2 is obtained at 28 mA/cm2 of current density for sodium borohydride at 25 °C. Whereas, methanol produces 31.5 mW/cm2 of maximum power density at 44 mA/cm2 of current density at 60 °C.


REAKTOR ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 52-58
Author(s):  
Marcelinus Christwardana ◽  
Linda Aliffia Yoshi ◽  
J. Joelianingsih

This study demonstrates the feasibility of producing bioelectricity utilizing yeast microbial fuel cell (MFC) technology with sugarcane bagasse juice as a substrate. Yeast Saccharomyces cerevisiae was employed as a bio-catalyst in the production of electrical energy. Sugarcane bagasse juice can be used as a substrate in MFC yeast because of its relatively high sugar content. When yeast was used as a biocatalyst, and Yeast Extract, Peptone, D-Glucose (YPD) Medium was used as a substrate in the MFC in the acclimatization process, current density increased over time to reach 171.43 mA/m2 in closed circuit voltage (CCV), maximum power density (MPD) reached 13.38 mW/m2 after 21 days of the acclimatization process. When using sugarcane bagasse juice as a substrate, MPD reached 6.44 mW/m2 with a sugar concentration of about 5230 ppm. Whereas the sensitivity, maximum current density (Jmax), and apparent Michaelis-Menten constant (𝐾𝑚𝑎𝑝𝑝) from the Michaelis-Menten plot were 0.01474 mA/(m2.ppm), 263.76 mA/m2, and 13594 ppm, respectively. These results indicate that bioelectricity can be produced from sugarcane bagasse juice by Saccharomyces cerevisiae.Keywords: biomass valorization, biofuel cell, acclimatization, maximum power density, Michaelis-Menten constant


RSC Advances ◽  
2014 ◽  
Vol 4 (45) ◽  
pp. 23790-23796 ◽  
Author(s):  
Siwen Wang ◽  
Xiaoling Yang ◽  
Yihua Zhu ◽  
Yunhe Su ◽  
Chunzhong Li

A solar-assisted microbial fuel cell (MFC) was prepared with flower-like CuInS2(CIS) as the photocathode. CIS with flower flakes and monodispersity could be beneficial to electron transfer under irradiation. The solar MFC achieved a maximum power density of 0.108 mW cm−2and a current density of 0.62 mA cm−2.


RSC Advances ◽  
2015 ◽  
Vol 5 (78) ◽  
pp. 63834-63838 ◽  
Author(s):  
Deepak Sridhar ◽  
Kaushik Balakrishnan ◽  
Tony J. Gnanaprakasa ◽  
Srini Raghavan ◽  
Krishna Muralidharan

Self-assembled fullerene additives at minor weight fractions (∼1 wt%) are shown to improve the specific capacity of activated carbon electrode based supercapacitors significantly, while simultaneously increasing the maximum power density.


Author(s):  
Jihoon Jeong ◽  
Seung-Wook Baek ◽  
Joongmyeon Bae

The metal-supported solid oxide fuel cell (SOFC) was studied. Hydrocarbon fueled operation was used to make SOFC system. Different operating characteristics for metal-supported SOFC are used than for conventional ones. Metal-supported SOFC was successfully fabricated by a high temperature sinter-joining method and the cathode was in-situ sintered. Synthetic gas, which is compounded as the diesel reformate gas composition and low hydrocarbons was completely removed by the diesel reformer. Metal-supported SOFC with synthetic gas was operated and evaluated and its characteristics analyzed. The performance of hydrogen operation shows 0.4 W·cm−2 of maximum power density. The maximum power density of the synthetic gas operation decreased to 0.22 W·cm−2 and to 0.11 W·cm−2 after 10 hours operation, respectively. Degradation occurred because a large steam quantity made an oxidation atmosphere at high temperature, causing the metallic part damage.


2021 ◽  
Vol 5 (1) ◽  
pp. 25
Author(s):  
Wika Atro Auriyani ◽  
Djoni Bustan ◽  
Sri Haryati

Most of the R&D on Direct Methanol Alkaline Fuel Cell (DMAFC) concentrates on electrode catalyst and appropriate electrolyte to improve the efficiency. Mostly, a Pt-based electrocatalyst was used. In this research, Nickel foam and membrane silver as non-noble metal catalysts were used in a square-shaped fuel cell stack of 15 x 15 cm in size. The ionic current in the Direct Methanol Alkaline Fuel Cell (DMAFC) was due to the conduction of hydroxide ions. Potassium hydroxide which plays an essential role in delivering hydroxide ions was used in this study. The electrolyte effect of potassium hydroxide was studied in different concentrations for the methanol oxidation reaction. Nickel foam and membrane silver were used for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). 1 M, 3 M, 5 M concentration of potassium hydroxide and 0.5 M, 1 M, 2 M, 3 M, 4 M, 5 M of methanol as a fuel have been conducted. The highest maximum power density of 543.35 mW/cm2 was obtained at 2,331 mA/cm2 of current density using the 5 M KOH and 0,5 M fuel. At equimolar concentration between fuel-electrolyte mixture give the higher current density.


Author(s):  
Jeongwoo Han ◽  
Michael Kokkolaras ◽  
Panos Papalambros

Fuel cells are being considered increasingly as a viable alternative energy source for automobiles because of their clean and efficient power generation. Numerous technological concepts have been developed and compared in terms of safety, robust operation, fuel economy, and vehicle performance. However, several issues still exist and must be addressed to improve the viability of this emerging technology. Despite the relatively large number of models and prototypes, a model-based vehicle design capability with sufficient fidelity and efficiency is not yet available in the literature. In this article we present an analysis and design optimization model for fuel cell vehicles that can be applied to both hybrid and non-hybrid vehicles by integrating a fuel cell vehicle simulator with a physics-based fuel cell model. The integration is achieved via quasi-steady fuel cell performance maps, and provides the ability to modify the characteristics of fuel cell systems with sufficient accuracy (less than 5% error) and efficiency (98% computational time reduction on average). Thus, a vehicle can be optimized subject to constraints that include various performance metrics and design specifications so that the overall efficiency of the hybrid fuel cell vehicle can be improved by 14% without violating any constraints. The obtained optimal fuel cell system is also compared to other, not vehicle-related, fuel cell systems optimized for maximum power density or maximum efficiency. A tradeoff between power density and efficiency can be observed depending on the size of compressors. Typically, a larger compressor results in higher fuel cell power density at the cost of fuel cell efficiency because it operates in a wider current region. When optimizing the fuel cell system for maximum power density, we observe that the optimal compressor operates efficiently. When optimizing the fuel cell system to be used as a power source in a vehicle, the optimal compressor is smaller and less efficient than the one of the fuel cell system optimized for maximum power density. In spite of this compressor inefficiency, the fuel cell system is 9% more efficient on average. In addition, vehicle performance can be improved significantly because the fuel cell system is designed both for maximum power density and efficiency. For a more comprehensive understanding of the overall design tradeoffs, several constraints dealing with cost, weight, and packaging issues must be considered.


2016 ◽  
Author(s):  
◽  
Dwayne Jensen Reddy

The effectiveness of using a low cost non - platinum (Pt) material for the catalyst layer of a polymer electrolyte fuel cell (PEMFC) was investigated. A test cell and station was developed. Two commercial Pt loaded membrane electrode assemblies (MEA) and one custom MEA were purchased from the Fuelcelletc store. Hydrogen and oxygen were applied to either side of the custom MEA which resulted in an additional sample tested. An aluminium flow field plate with a hole type design was manufactured for the reactants to reach the reaction sites. End plates made from perspex where used to enclose the MEA, flow field plates, and also to provide reactant inlet and outlet connection points. The developed test station consisted of hydrogen and oxygen sources, pressure regulators, mass flow controllers, heating plate, and humidification units. A number of experimental tests were carried out to determine the performance of the test cells. These tests monitored the performance of the test cell under no-load and loaded conditions. The tests were done at 25 °C and 35 °C at a pressure of 0.5 bar and varying hydrogen and oxygen volume flow rates. The no-load test showed that the MEA’s performed best at high reactant flow rates of 95 ml/min for hydrogen and 38 ml/min for oxygen. MEA 1, 2, 3, and 4 achieved an open circuit voltage (OVC) of 0.936, 0.855, 0.486 and 0.34 V respectively. The maximum current density achieved for the MEAs were 0.3816, 0.284, 15x10-6, and 50x10-6 A/cm2. Under loaded conditions the maximum power densities achieved at 25 °C for MEA’s 1, 2, 3, and 4 were 0.05, 0.038, 2.3x10-6, 1.99x10-6 W/cm2 respectively. Increasing the temperature by 10°C for MEA 1, 2, 3, 4 resulted in a 16.6, 22.1, 1.79, 10.47 % increase in the maximum power density. It was found that increasing platinum loading, flow rates, and temperature improved the fuel cell performance. It was also found that the catalytic, stability and adsorption characteristics of silver did not improve when combining it with iridium (Ir) and ruthenium oxide (RuOx) which resulted in low current generation. The low maximum power density thus achieved at a reduced cost is not feasible. Thus further investigation into improving the catalytic requirements of non Pt based catalyst material combinations is required to achieve results comparable to that of a Pt based PEMFC.


RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 50201-50208 ◽  
Author(s):  
Wenbin Hao ◽  
Yongli Mi

A direct carbon fuel cell with a CuO–ZnO–SDC composite anode was demonstrated. The maximum power density was 130 mW cm−2 at 700 °C. The results indicate that CuO–ZnO can be used as a nickel-free anode material for direct carbon fuel cells.


2011 ◽  
Vol 64 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Yifeng Zhang ◽  
Lola Gonzalez Olias ◽  
Prawit Kongjan ◽  
Irini Angelidaki

A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145 ± 5 mW/m2, 470 Ω) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190 ± 5 mW/m2. The corresponding total chemical oxygen demand (TCOD) removal efficiency was 78.1 ± 0.2% with initial TCOD of 49.7 g/L. The power generation of SMFC was depended on the sludge concentration, while dilution of the raw sludge resulted in higher power density. The maximum power density was saturated at sludge concentration of 17 g-TCOD/L, where 290 mW/m2 was achieved. When effluents from an anaerobic digester that was fed with raw sludge were used as substrate in the SMFC, a maximum power density of 318 mW/m2, and a final TCOD removal of 71.9 ± 0.2% were achieved. These results have practical implications for development of an effective system to treat sewage sludge and simultaneously recover energy.


Sign in / Sign up

Export Citation Format

Share Document