Highly Efficient Conversion of Ammonia in Electricity by Solid Oxide Fuel Cells

2006 ◽  
Vol 3 (4) ◽  
pp. 499-502 ◽  
Author(s):  
N. J. J. Dekker ◽  
G. Rietveld

Hydrogen is the fuel for fuel cells with the highest cell voltage. A drawback for the use of hydrogen is the low energy density storage capacity, even at high pressures. Liquid fuels such as gasoline and methanol have a high energy density but lead to the emission of the greenhouse gas CO2. Ammonia could be the ideal bridge fuel, having a high energy density at relative low pressure and no (local) CO2 emission. Ammonia as a fuel for the solid oxide fuel cell (SOFC) appears to be very attractive, as shown by cell tests with electrolyte supported cells (ESC) as well as anode supported cells (ASC) with an active area of 81cm2. The cell voltage was measured as function of the electrical current, temperature, gas composition and ammonia (NH3) flow. With NH3 as fuel, electrical cell efficiencies up to 70% (LHV) can be achieved at 0.35A∕cm2 and 60% (LHV) at 0.6A∕cm2. The cell degradation during 3000 h of operation was comparable with H2 fueled measurements. Due to the high temperature and the catalytic active Ni∕YSZ anode, NH3 cracks at the anode into H2 and N2 with a conversion of >99.996%. The high NH3 conversion is partly due to the withdrawal of H2 by the electrochemical cell reaction. The remaining NH3 will be converted in the afterburner of the system. The NOx outlet concentration of the fuel cell is low, typically <0.5ppm at temperatures below 950°C and around 4ppm at 1000°C. A SOFC system fueled with ammonia is relative simple compared with a carbon containing fuel, since no humidification of the fuel is necessary. Moreover, the endothermic ammonia cracking reaction consumes part of the heat produced by the fuel cell, by which less cathode cooling air is required compared with H2 fueled systems. Therefore, the system for a NH3 fueled SOFC will have relatively low parasitic power losses and relative small heat exchangers for preheating the cathode air flow.

Author(s):  
M. Santarelli ◽  
M. Cabrera ◽  
M. Calì

Although it accounts for only 4.2% of the total global warming potential, the concern today is that aviation generated CO2 is projected to grow to approximately 5.7% by 2050. Aviation emissions are growing faster than any other sector and they risk undermining the progress achieved through emission cuts in other areas of the economy. Rapidly emerging hydrogen and fuel-cell-based technologies could be developed for future replacement of on-board electrical systems in “more-electric” or “all-electric” aircrafts. Primary advantages of deploying these technologies are low emissions and low noise (important features for commuter airplanes, which takeoff and land in urban areas). Solid oxide fuel-cell (SOFC) systems could result advantageous for some aeronautical applications due to their capability of accepting hydrocarbons and high energy-density fuels. Moreover they are suitable for operating in combined-heat-and-power configurations, recovering heat from the high-temperature exhaust gases, which could be used to supply thermal loads therefore reducing the electric power requested by the aircraft. ENFICA-FC is a project selected by the European Commission in the Aeronautics and Space priority of the Sixth Framework Programme (FP6) and led by Politecnico di Torino, in Turin, Italy. One of the objectives of the project is to carry out a feasibility study on a more-electric intercity aircraft (regional jet: 32 seats). After the characterization of the power consumption of electrical and nonelectrical loads, and the definition of a mission profile, the design of the SOFC-based energy system as well as the simulation of a complete mission is performed hypothesizing different system configurations. The simulation concerns both the stack (current and current density, cell and stack voltage, etc.) and the balance-of-plant (air compressor power, gross stack power, system efficiency, etc.). The obtained results are analyzed and discussed.


Author(s):  
Fikile R. Brushett ◽  
Adam S. Hollinger ◽  
Larry J. Markoski ◽  
Paul J. A. Kenis

A continuously growing need for high energy density miniaturized power sources for portable electronic applications has spurred the development of a variety of microscale fuel cells. For portable applications, membrane-based fuel cells using small organic fuels (i.e., methanol, formic acid) are among the most promising configurations as they benefit from the high energy density and easy storage of the liquid fuels. Unfortunately, the performance of these fuel cells is often hindered by membrane-related issues such as water management (i.e., electrode dry-out / flooding) and fuel crossover. Furthermore, high costs of, for example, catalysts and membranes as well as durability concerns still hinder commercialization efforts. To address these challenges we have developed membraneless laminar flow-based fuel cells (LFFCs), which exploit microscale transport phenomena (laminar flow) to compartmentalize streams within a single microchannel. The properties of various fuel and media flexible LFFCs will be presented and novel strategies for improving fuel utilization and power density will be discussed. Furthermore, the performance of a scaled-out 14-channel LFFC prototype is presented. We have also developed a microfluidic fuel cell as a powerful analytical platform to investigate and optimize the complex processes that govern the performance of catalysts and electrodes in an operating fuel cell. This platform bridges the gap between a conventional 3-electrode electrochemical cell and a fuel cell, as it allows for standard electrochemical analysis (e.g., CV, CA, EIS) as well as fuel cell analysis (e.g., IV curves).


Author(s):  
Seugnwhan Baek ◽  
Yongmin Kim ◽  
Joongmyeon Bae

The aim of this work is to analyze system efficiency when anode-off gases are recirculated at a diesel driven solid oxide fuel cell system. Diesel was chosen as a fuel due to advantages of its high energy density and well-established infrastructure. Three systems were mainly investigated which have different system configurations. First system does not use recirculation of anode-off gas at the system. At second model anode-off gases are recirculated to a diesel reformer in the system. Finally anode-off gases are recirculated to the anode side of a solid oxide fuel cell stack. Three different systems are compared in terms of total efficiency, performances of diesel reformer and solid oxide fuel cell. It was found that various inlet conditions and split conditions would make differences of total efficiencies and component performances at the three different systems.


Author(s):  
Martin Andersson ◽  
Hedvig Paradis ◽  
Jinliang Yuan ◽  
Bengt Sundén

It is expected that fuel cells will play a significant role in a future sustainable energy system due to their high energy efficiency and possibility to use as renewable fuels. Fuels, such as biogas, can be produced locally close to the customers. The improvement for fuel cells during the past years has been fast, but the technology is still in the early phases of development; however, the potential is enormous. A computational fluid dynamics (CFD) approach (COMSOL MULTIPHYSICS) is employed to investigate effects of different fuels such as biogas, prereformed methanol, ethanol, and natural gas. The effects of fuel inlet composition and temperature are studied in terms of temperature distribution, molar fraction distribution, and reforming reaction rates within a singe cell for an intermediate temperature solid oxide fuel cell. The developed model is based on the governing equations of heat, mass, and momentum transport, which are solved together with global reforming reaction kinetics. The result shows that the heat generation within the cell depends mainly on the initial fuel composition and the inlet temperature. This means that the choice of internal or external reforming has a significant effect on the operating performance. The anode structure and catalytic characteristic have a major impact on the reforming reaction rates and also on the cell performance. It is concluded that biogas, methanol, and ethanol are suitable fuels in a solid oxide fuel cell system, while more complex fuels need to be externally reformed.


2015 ◽  
Vol 12 (6) ◽  
pp. 591-606 ◽  
Author(s):  
Venkateswarlu Velisala ◽  
G. Naga Srinivasulu ◽  
B. Srinivasa Reddy ◽  
K. Venkata Koteswara Rao

Fuel cells technologies are the most promising green energy technologies for diverse applications. One of the fastest growing areas is the portable electronic applications where the power range is the order of 1–100 W. For most of the portable electronic devices, rechargeable battery is the major energy source. Due to limitations like limited capacity, requirement of external power for recharge have led many researchers to look for alternative power sources to power portable electronic devices. The high energy density of fuel cells makes them very attractive alternative to batteries for portable power applications. There are a variety of fuel cell technologies being considered to replace batteries in portable electronic equipment. Direct Liquid Fuel Cells (DLFCs) have attracted much attention due to their potential applications as a power source for portable electronic devices. The advantages of DLFCs over hydrogen fed PEM fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. Unlike batteries, fuel cells need not be recharged, merely refueled. This paper provides an overview on challenges of DLFCs (Direct Liquid Fuel Cells), like fuel crossover, cost, durability, water management, weight and size along with approaches being investigated to solve these challenges. Portable Fuel Cell Commercialization Targets for future and producers of portable fuel cells across the globe are also discussed in this paper.


RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7-14
Author(s):  
Cheng Cheng Wang ◽  
Mortaza Gholizadeh ◽  
Bingxue Hou ◽  
Xincan Fan

Strontium segregation in a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) electrode reacts with Cr and S in a solid oxide fuel cell (SOFC), which can cause cell performance deterioration.


2018 ◽  
Vol 60 ◽  
pp. 431-440 ◽  
Author(s):  
Sandesh Y. Sawant ◽  
Thi Hiep Han ◽  
Sajid Ali Ansari ◽  
Jun Ho Shim ◽  
Anh Thi Nguyet Nguyen ◽  
...  

2021 ◽  
Author(s):  
L. Mantelli ◽  
M. L. Ferrari ◽  
A. Traverso

Abstract Pressurized solid oxide fuel cell (SOFC) systems are one of the most promising technologies to achieve high energy conversion efficiencies and reduce pollutant emissions. The most common solution for pressurization is the integration with a micro gas turbine, a device capable of exploiting the residual energy of the exhaust gas to compress the fuel cell air intake and, at the same time, generating additional electrical power. The focus of this study is on an alternative layout, based on an automotive turbocharger, which has been more recently considered by the research community to improve cost effectiveness at small size (&lt; 100 kW), despite reducing slightly the top achievable performance. Such turbocharged SOFC system poses two main challenges. On one side, the absence of an electrical generator does not allow the direct control of the rotational speed, which is determined by the power balance between turbine and compressor. On the other side, the presence of a large volume between compressor and turbine, due to the fuel cell stack, alters the dynamic behavior of the turbocharger during transients, increasing the risk of compressor surge. The pressure oscillations associated with such event are particularly detrimental for the system, because they could easily damage the materials of the fuel cells. The aim of this paper is to investigate different techniques to drive the operative point of the compressor far from the surge condition when needed, reducing the risks related to transients and increasing its reliability. By means of a system dynamic model, developed using the TRANSEO simulation tool by TPG, the effect of different anti-surge solutions is simulated: (i) intake air conditioning, (ii) water spray at compressor inlet, (iii) air bleed and recirculation, and (iv) installation of an ejector at the compressor intake. The pressurized fuel cell system is simulated with two different control strategies, i.e. constant fuel mass flow and constant turbine inlet temperature. Different solutions are evaluated based on surge margin behavior, both in the short and long terms, but also monitoring other relevant physical quantities of the system, such as compressor pressure ratio and turbocharger rotational speed.


2017 ◽  
Vol 10 (4) ◽  
pp. 964-971 ◽  
Author(s):  
Yu Chen ◽  
Yan Chen ◽  
Dong Ding ◽  
Yong Ding ◽  
YongMan Choi ◽  
...  

A hybrid catalyst coating dramatically enhances the electrocatalytic activity and durability of a solid oxide fuel cell cathode.


Author(s):  
Z. F. Zhou ◽  
R. Kumar ◽  
S. T. Thakur ◽  
L. R. Rudnick ◽  
H. Schobert ◽  
...  

Solid oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 hours for the waste vegetable oil without dilution. The generated power was up to 0.25 W/cm2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.


Sign in / Sign up

Export Citation Format

Share Document