Modeling Homogeneous Combustion in Bubbling Beds Burning Liquid Fuels

2006 ◽  
Vol 129 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Tiziano Faravelli ◽  
Alessio Frassoldati ◽  
Eliseo Ranzi ◽  
Miccio Francesco ◽  
Miccio Michele

This paper introduces a model for the description of the homogeneous combustion of various fuels in fluidized bed combustors (FBC) at temperatures lower than the classical value for solid fuels, i.e., 850°C. The model construction is based on a key bubbling fluidized bed feature: A fuel-rich (endogenous) bubble is generated at the fuel injection point, travels inside the bed at constant pressure, and undergoes chemical conversion in the presence of mass transfer with the emulsion phase and of coalescence with air (exogenous) bubbles formed at the distributor and, possibly, with other endogenous bubbles. The model couples a fluid-dynamic submodel based on two-phase fluidization theory with a submodel of gas phase oxidation. To this end, the model development takes full advantage of a detailed chemical kinetic scheme, which includes both the low and high temperature mechanisms of hydrocarbon oxidation, and accounts for about 200 molecular and radical species involved in more than 5000 reactions. Simple hypotheses are made to set up and close mass balances for the various species as well as enthalpy balances in the bed. First, the conversion and oxidation of gaseous fuels (e.g., methane) were calculated as a test case for the model; then, n-dodecane was taken into consideration to give a simple representation of diesel fuel using a pure hydrocarbon. The model predictions qualitatively agree with some of the evidence from the experimental data reported in the literature. The fate of hydrocarbon species is extremely sensitive to temperature change and oxygen availability in the rising bubble. A preliminary model validation was attempted with results of experiments carried out on a prepilot, bubbling combustor fired by underbed injection of a diesel fuel. Specifically, the model results confirm that heat release both in the bed and in the freeboard is a function of bed temperature. At lower emulsion phase temperatures many combustible species leave the bed unburned, while post-combustion occurs after the bed and freeboard temperature considerably increases. This is a well-recognized undesirable feature from the viewpoint of practical application and emission control.

Author(s):  
Tiziano Faravelli ◽  
Alessio Frassoldati ◽  
Eliseo Ranzi ◽  
Francesco Miccio ◽  
Michele Miccio

This paper presents a first implementation of a model for the description of homogeneous combustion of different fuels in fluidized bed combustors (FBC) at temperatures lower than the classical value for solid fuels, i.e. 850°C. Model construction is based on a key feature of the bubbling fluidized bed: a fuel-rich (endogenous) bubble is generated at the fuel injection point, travels inside the bed at constant pressure and undergoes chemical conversion in presence of mass transfer with the emulsion phase and of coalescence with air (exogenous) bubbles formed at the distributor and, possibly, with other endogenous bubbles. The model couples a fluid-dynamic sub-model based on the two phases theory of fluidization with a sub-model of gas phase oxidation. To this end, model development takes full advantage of a detailed chemical kinetics scheme, which includes both the low and high temperature mechanisms of hydrocarbon oxidation and accounts for about 200 molecular and radical species involved in more than 5000 reactions. Simple hypotheses are made to set-up and close mass balances of the various species as well as enthalpy balances in the bed. First, conversion and oxidation of gaseous fuels (e.g. methane) have been calculated as a test case for the model; then, n-dodecane has been taken into consideration to simply represent a diesel fuel by means of a pure hydrocarbon. Model predictions qualitatively agree with some evidences coming from experimental data reported in the literature. The fate of hydrocarbon species is extremely sensitive to temperature changes and oxygen availability in the rising bubble. A preliminary model validation has been attempted against the results of experiments carried out on a pre-pilot, bubbling combustor fired with underbed injection of a diesel fuel. In particular, model results confirm the trends that the heat release either in the bed or in the freeboard experimentally shows as a function of bed temperature. At lower emulsion phase temperatures many combustible species leave unburned the bed, post-combustion occurs past the bed and freeboard temperature considerably increases; as it is well known, this is an undesirable feature from the viewpoints of practical application and emission control.


Author(s):  
Fredrik Niklasson ◽  
Filip Johnsson

This work investigates the influence of biomass fuel properties on the local heat balance in a commercial-scale fluidized bed furnace. Experiments with different wood based fuels were performed in the Chalmers 12 MWth circulating fluidized bed boiler, temporarily modified to run under stationary conditions. A two-phase flow model of the bed and splash zone is applied, where the combustion rate in the bed is estimated by global kinetic expressions, limited by gas exchange between oxygen-rich bubbles and a fuel-rich emulsion phase. The outflow of bubbles from the bed is treated as “ghost bubbles” in the splash zone, where the combustion rate is determined from turbulent properties. It is found that a large amount of heat is required for the fuel and air to reach the temperature of the bed, in which the heat from combustion is limited by a low char content of the fuel. This implies that a substantial fraction of the heat from combustion of volatiles in the splash zone has to be transferred back to the bed to keep the bed temperature constant. It is concluded that the moisture content of the fuel does not considerably alter the vertical distribution of heat emitted, as long as the bed temperature is kept constant by means of flue gas recycling.


2001 ◽  
Vol 10 (3) ◽  
pp. 223-227 ◽  
Author(s):  
Yongling He ◽  
Zhihe Zhao ◽  
Jianxin Liu ◽  
Huiyong Du ◽  
Min Li ◽  
...  

2011 ◽  
Vol 312-315 ◽  
pp. 1079-1084 ◽  
Author(s):  
Ahmad Shamiri ◽  
Mohd Azlan Hussain ◽  
Farouq S. Mjalli

A two-phase model is proposed for describing the dynamics of a fluidized bed reactor used for polypropylene production. In the proposed model, the fluidized bed is divided into an emulsion phase and bubble phase where the bubble phase flow pattern is assumed to be plug flow and the emulsion phase is considered to be perfectly mixed. Similar previous models consider the reaction in the emulsion phase only. In this work the contribution of reaction in the bubble phase is considered and its effect on the overall polypropylene production is investigated. The kinetic model combined with hydrodynamic model in order to develop a comprehensive model for gas-phase propylene copolymerization reactor. Simulation profiles of the proposed model were compared with those of well mixed model for the emulsion phase temperature. The simulated temperature profile showed a lower rate of change compared to the previously reported models due to lower polymerization rate. Model simulation showed that about 13% of the produced polymer comes from the bubble phase and this considerable amount of polymerization in the bubbles should not be neglected in any modeling attempt.


Sign in / Sign up

Export Citation Format

Share Document