Unsteady Flow Physics and Performance of a One-and-1∕2-Stage Unshrouded High Work Turbine

2006 ◽  
Vol 129 (2) ◽  
pp. 348-359 ◽  
Author(s):  
T. Behr ◽  
A. I. Kalfas ◽  
R. S. Abhari

This paper presents an experimental study of the flow mechanisms of tip leakage across a blade of an unshrouded turbine rotor. It shows the design of a new one-and-1∕2-stage, unshrouded turbine configuration, which has been developed within the Turbomachinery Laboratory of ETH Zurich. This test case is a model of a high work (Δh∕u2=2.36) axial turbine. The experimental investigation comprises data from unsteady and steady probe measurements, which has been acquired around all the bladerows of the one-and-1∕2-stage, unshrouded turbine. A newly developed 2-sensor Fast Response Aerodynamic Probe (FRAP) technique has been used in the current measurement campaign. The paper contains a detailed analysis of the unsteady interaction between rotor and stator blade rows, with particular attention paid on the flow in the blade tip region. It has been found that the interaction of the rotor and the downstream stator has an influence on the development of the tip leakage vortex of the rotor. The vortex is modulated by the stator profiles and shows variation in size and relative position to the rotor trailing edge when it stretches around the stator leading edge. Thereby a deflection of the tip leakage vortex has been observed, which expresses in a varying circumferential distance between two neighboring vortices of ±20% of a rotor pitch. Furthermore, a significant influence of quasi-stationary secondary flow features of the upstream stator row on the secondary flow of the rotor has been detected. The geometry and flow field data of the one-and-1∕2-stage turbine will be available to the turbomachinery community for validation and improvement of numerical tools.

Author(s):  
T. Behr ◽  
A. I. Kalfas ◽  
R. A. Abhari

This paper presents an experimental study of the flow mechanisms of tip leakage across a blade of an unshrouded turbine rotor. It shows the design of a new one-and-1/2-stage, unshrouded turbine configuration, which has been developed within the Turbomachinery Laboratory of ETH Zurich. This test case is a model of a high work (Δh/u2 = 2.36) axial turbine. The experimental investigation comprises data from unsteady and steady probe measurements, which has been acquired around all the bladerows of the one-and-1/2-stage, unshrouded turbine. A newly developed 2-sensor Fast Response Aerodynamic Probe (FRAP) technique has been used in the current measurement campaign. The paper contains a detailed analysis of the unsteady interaction between rotor and stator blade rows, with particular attention paid on the flow in the blade tip region. It has been found that the pressure field of the second stator row has a influence on the development of the tip leakage vortex downstream of the rotor. The vortex is modulated by the stator profiles and shows variation in size and relative position to the rotor trailing edge when it stretches around the stator leading edge. Thereby a deflection of the tip leakage vortex has been observed, which expresses in a varying circumferential distance between two neighboring vortices of ±20% of a rotor pitch. Furthermore, a significant influence of quasi-stationary secondary flow features of the upstream stator row on the secondary flow of the rotor has been detected. The geometry data of the one-and-1/2-stage turbine will be available to the public domain for validation and improvement of numerical tools.


Author(s):  
Wolfgang Sanz ◽  
Stefan Zerobin ◽  
Manfred Egger ◽  
Pascal Bader ◽  
Paul Pieringer ◽  
...  

Purge air is injected at the hub and shroud of axial turbines in order to avoid hot gas entering the gaps between stationary and rotating blade rows. The purge flows considerably interact with the main flow and influence the secondary flow like the tip leakage vortex. Therefore, at Graz University of Technology the flow in a product-representative one-and-a-half stage test turbine under the influence of purge flows was investigated. Four individual purge mass flows differing in flow rate, pressure, and temperature were injected through hub and tip cavities before and after the unshrouded high-pressure turbine rotor. In order to get more insight into the cavity flows and the flow evolution in the rotor this configuration is studied with a steady CFD simulation with and without purge flows. It was found that the secondary flow and especially the tip leakage vortex is significantly influenced by the purge flow which varies in circumferential direction. The differences between purge and zero-purge flow conditions are discussed with the help of radial distributions and contour plots of stream-wise vorticity. Streamlines allow to follow the path of the purge flows in the rotor and show the radial displacement of the secondary flow vortices. Wall streamlines describe the changes in the boundary layer flow and their effect on the vorticity after the trailing edge.


Author(s):  
P. Palafox ◽  
M. L. G. Oldfield ◽  
J. E. LaGraff ◽  
T. V. Jones

New, detailed flow field measurements are presented for a very large low-speed cascade representative of a high-pressure turbine rotor blade with turning of 110 degrees and blade chord of 1.0 m. Data was obtained for tip leakage and passage secondary flow at a Reynolds number of 4.0 × 105, based on exit velocity and blade axial chord. Tip clearance levels ranged from 0% to 1.68% of blade span (0% to 3% of blade chord). Particle Image Velocimetry (PIV) was used to obtain flow field maps of several planes parallel to the tip surface within the tip gap, and adjacent passage flow. Vector maps were also obtained for planes normal to the tip surface in the direction of the tip leakage flow. Secondary flow was measured at planes normal to the blade exit angle at locations upstream and downstream of the trailing edge. The interaction between the tip leakage vortex and passage vortex is clearly defined, revealing the dominant effect of the tip leakage flow on the tip endwall secondary flow. The relative motion between the casing and the blade tip was simulated using a motor-driven moving belt system. A reduction in the magnitude of the under-tip flow near the endwall due to the moving wall is observed and the effect on the tip leakage vortex examined.


Author(s):  
Masanao Kaneko ◽  
Hoshio Tsujita

A transonic centrifugal compressor impeller is generally composed of the main and the splitter blades which are different in chord length. As a result, the tip leakage flows from the main and the splitter blades interact with each other and then complicate the flow field in the compressor. In this study, in order to clarify the individual influences of these leakage flows on the flow field in the transonic centrifugal compressor stage at near-choke to near-stall condition, the flows in the compressor at four conditions prescribed by the presence and the absence of the tip clearances were analyzed numerically. The computed results clarified the following noticeable phenomena. The tip clearance of the main blade induces the tip leakage vortex from the leading edge of the main blade. This vortex decreases the blade loading of the main blade to the negative value by the increase of the flow acceleration along the suction surface of the splitter blade, and consequently induces the tip leakage vortex caused by the negative blade loading of the main blade at any operating points. These phenomena decline the impeller efficiency. On the other hand, the tip clearance of the splitter blade decreases the afore mentioned acceleration by the formation of the tip leakage vortex from the leading edge of the splitter blade and the decrease of the incidence angle for the splitter blade caused by the suction of the flow into the tip clearance. These phenomena reduce the loss generated by the negative blade loading of the main blade and consequently reduce the decline of the impeller efficiency. Moreover, the tip clearances enlarge the flow separation around the diffuser inlet and then decline the diffuser performance independently of the operating points.


Author(s):  
P. Jenny ◽  
R. S. Abhari ◽  
M. G. Rose ◽  
M. Brettschneider ◽  
J. Gier

This paper presents an experimental and computational study of non-axisymmetric rotor end wall profiling in a low pressure turbine. End wall profiling has been proven to be an effective technique to reduce both turbine blade row losses and the required purge flow. For this work a rotor with profiled end walls on both hub and shroud is considered. The rotor tip and hub end walls have been designed using an automatic numerical optimisation that is implemented in an in-house MTU code. The end wall shape is modified up to the platform leading edge. Several levels of purge flow are considered in order to analyze the combined effects of end wall profiling and purge flow. The non-dimensional parameters match real engine conditions. The 2-sensor Fast Response Aerodynamic Probe (FRAP) technique system developed at ETH Zurich is used in this experimental campaign. Time-resolved measurements of the unsteady pressure, temperature and entropy fields between the rotor and stator blade rows are made. For the operating point under investigation the turbine rotor blades have pressure side separations. The unsteady behavior of the pressure side bubble is studied. Furthermore, the results of unsteady RANS simulations are compared to the measurements and the computations are also used to detail the flow field with particular emphasis on the unsteady purge flow migration and transport mechanisms in the turbine main flow containing a rotor pressure side separation. The profiled end walls show the beneficial effects of improved measured efficiency at this operating point, together with a reduced sensitivity to purge flow.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
P. Palafox ◽  
M. L. G. Oldfield ◽  
J. E. LaGraff ◽  
T. V. Jones

New, detailed flow field measurements are presented for a very large low-speed cascade representative of a high-pressure turbine rotor blade with turning of 110deg and blade chord of 1.0m. Data were obtained for tip leakage and passage secondary flow at a Reynolds number of 4.0×105, based on exit velocity and blade axial chord. Tip clearance levels ranged from 0% to 1.68% of blade span (0% to 3% of blade chord). Particle image velocimetry was used to obtain flow field maps of several planes parallel to the tip surface within the tip gap, and adjacent passage flow. Vector maps were also obtained for planes normal to the tip surface in the direction of the tip leakage flow. Secondary flow was measured at planes normal to the blade exit angle at locations upstream and downstream of the trailing edge. The interaction between the tip leakage vortex and passage vortex is clearly defined, revealing the dominant effect of the tip leakage flow on the tip end-wall secondary flow. The relative motion between the casing and the blade tip was simulated using a motor-driven moving belt system. A reduction in the magnitude of the undertip flow near the end wall due to the moving wall is observed and the effect on the tip leakage vortex examined.


Author(s):  
Huijing Zhao ◽  
Zhiheng Wang ◽  
Shubo Ye ◽  
Guang Xi

To better understand the characteristics of tip leakage flow and interpret the correlation between flow instability and tip leakage flow, the flow in the tip region of a centrifugal impeller is investigated by using the Reynolds averaged Navier–Stokes solver technique. With the decrease of mass flow rate, both the tip leakage vortex trajectory and the mainflow/tip leakage flow interface are shifted towards upstream. The mainflow/tip leakage flow interface finally reaches the leading edge of main blade at the near-stall condition. A prediction model is proposed to track the tip leakage vortex trajectory. The blade loading at blade tip and the averaged streamwise velocity of main flow within tip clearance height are adopted to determine the tip leakage vortex trajectory in the proposed model. The coefficient k in Chen’s model is found to be not a constant. Actually, it is correlated with h/b (the ratio of blade tip clearance height to blade tip thickness), because h/b will significantly influence the flow structure across the tip clearance. The effectiveness of the proposed prediction model is further demonstrated by tracking the tip leakage vortex trajectories in another three centrifugal impellers characterized with different h/b (s).


1993 ◽  
Vol 115 (3) ◽  
pp. 435-443 ◽  
Author(s):  
S. Kang ◽  
C. Hirsch

Experimental results from a study of the three-dimensional flow in a linear compressor cascade with stationary endwall at design conditions are presented for tip clearance levels of 1.0, 2.0, and 3.3 percent of chord, compared with the no-clearance case. In addition to five-hole probe measurements, extensive surface flow visualizations are conducted. It is observed that for the smaller clearance cases a weak horseshoe vortex forms in the front of the blade leading edge. At all the tip gap cases, a multiple tip vortex structure with three discrete vortices around the midchord is found. The tip leakage vortex core is well defined after the midchord but does not cover a significant area in traverse planes. The presence of the tip leakage vortex results in the passage vortex moving close to the endwall and the suction side.


Author(s):  
Hongwei Ma ◽  
Haokang Jiang

This paper presents an experimental study of the three-dimensional turbulent flow field in the tip region of an axial flow compressor rotor passage at a near stall condition. The investigation was conducted in a low-speed large-scale compressor using a 3-component Laser Doppler Velocimetry and a high frequency pressure transducer. The measurement results indicate that a tip leakage vortex is produced very close to the leading edge, and becomes the strongest at about 10% axial chord from the leading edge. Breakdown of the vortex periodically occurs at about 1/3 chord, causing very strong turbulence in the radial direction. Flow separation happens on the tip suction surface at about half chord, prompting the corner vortex migrating toward the pressure side. Tangential migration of the low-energy fluids results in substantial flow blockage and turbulence in the rear of a rotor passage. Unsteady interactions among the tip leakage vortex, the separated vortex and the corner flow should contribute to the inception of the rotating stall in a compressor.


Author(s):  
Ashwin Ashok ◽  
Patur Ananth Vijay Sidhartha ◽  
Shine Sivadasan

Abstract Tip clearance of axial compressor blades allows leakage of the flow, generates significant losses and reduces the compressor efficiency. The present paper aims to discuss the axial compressor tip aerodynamics for various configurations of tip gap with trench. The various configurations are obtained by varying the clearance, trench depth, step geometry and casing contouring. In this paper the axial compressor aerodynamics for various configurations of tip gap with trench have been studied. The leakage flow structure, vorticity features and entropy generations are analyzed using RANS based CFD. The linear compressor cascade comprises of NACA 651810 blade with clearance height varied from 0.5% to 2% blade span. Trail of the tip leakage vortex and the horseshoe vortex on the blade suction side are clearly seen for the geometries with and without casing treatments near the stalling point. Since the trench side walls are similar to forward/backing steps, a step vortex is observed near the leading edge as well as trailing edge of the blade and is not seen for the geometry without the casing treatment. Even though the size of the tip leakage vortex seams to be reduces by providing a trench to the casing wall over the blade, the presence of additional vortices like the step vortex leads to comparatively higher flow losses. An increase in overall total pressure loss due to the application of casing treatment is observed. However an increase in stall margin for the geometries with casing is noted.


Sign in / Sign up

Export Citation Format

Share Document