Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures

2007 ◽  
Vol 129 (4) ◽  
pp. 937-944 ◽  
Author(s):  
Eric L. Petersen ◽  
Joel M. Hall ◽  
Schuyler D. Smith ◽  
Jaap de Vries ◽  
Anthony R. Amadio ◽  
...  

Shock-tube experiments and chemical kinetics modeling were performed to further understand the ignition and oxidation kinetics of lean methane-based fuel blends at gas turbine pressures. Such data are required because the likelihood of gas turbine engines operating on CH4-based fuel blends with significant (>10%) amounts of hydrogen, ethane, and other hydrocarbons is very high. Ignition delay times were obtained behind reflected shock waves for fuel mixtures consisting of CH4, CH4∕H2, CH4∕C2H6, and CH4∕C3H8 in ratios ranging from 90/10% to 60/40%. Lean fuel/air equivalence ratios (ϕ=0.5) were utilized, and the test pressures ranged from 0.54 to 30.0atm. The test temperatures were from 1090K to 2001K. Significant reductions in ignition delay time were seen with the fuel blends relative to the CH4-only mixtures at all conditions. However, the temperature dependence (i.e., activation energy) of the ignition times was little affected by the additives for the range of mixtures and temperatures of this study. In general, the activation energy of ignition for all mixtures except the CH4∕C3H8 one was smaller at temperatures below approximately1300K(∼27kcal∕mol) than at temperatures above this value (∼41kcal∕mol). A methane/hydrocarbon–oxidation chemical kinetics mechanism developed in a recent study was able to reproduce the high-pressure, fuel-lean data for the fuel/air mixtures. The results herein extend the ignition delay time database for lean methane blends to higher pressures (30atm) and lower temperatures (1100K) than considered previously and represent a major step toward understanding the oxidation chemistry of such mixtures at gas turbine pressures. Extrapolation of the results to gas turbine premixer conditions at temperatures less than 800K should be avoided however because the temperature dependence of the ignition time may change dramatically from that obtained herein.

Author(s):  
Sean P. Cooper ◽  
Zachary K. Browne ◽  
Sulaiman A. Alturaifi ◽  
Olivier E. Mathieu ◽  
Eric Petersen

Abstract In choosing the lubricating oil for a gas turbine system, properties such as viscosity, viscosity index, corrosion prevention, and thermal stability are chosen to optimize turbine longevity and efficiency. Another property that needs to be considered is the lubricant's reactivity, as the lubricant's ability to resist combustion during turbine operation is highly desirable. In evaluating a method to define reactivity, the extremely low vapor pressure of these lubricants makes conventional vaporization by heating impractical. To this end, a new experiment was designed and tested to evaluate the reactivity of lubricating oils using an existing shock-tube facility at Texas A&M University equipped with an automotive fuel injector. This experiment disperses a pre-measured amount of lubricant into a region of high-temperature air to study auto-ignition. To ensure proper dispersal, a laser extinction diagnostic was used to detect the lubricant particles behind the reflected shock as they are dispersed and vaporized. An OH* chemiluminescence diagnostic was used to determine ignition delay time. Using this method, various 32-, 36-, and 46-weight lubricants identified as widely used in the gas turbine industry were tested. Experiments were conducted in post-reflected shock conditions around 1370 K (2006 ºF) and 1.2 atm, where ignition delay time, peak OH* emission, and time-to-peak values were recorded and compared. Ignition was observed for all but one of the lubricants at these conditions, and mild to strong ignition was observed for the other lubricants with varying ignition delay times.


Author(s):  
Sean P. Cooper ◽  
Zachary K. Browne ◽  
Sulaiman A. Alturaifi ◽  
Olivier Mathieu ◽  
Eric L. Petersen

Abstract In choosing the lubricating oil for a gas turbine system, properties such as viscosity, viscosity index, corrosion prevention, and thermal stability are chosen to optimize turbine longevity and efficiency. Another property that needs to be considered is the lubricant’s reactivity, as the lubricant’s ability to resist combustion during turbine operation is highly desirable. In evaluating a method to define reactivity, the extremely low vapor pressure of these lubricants makes conventional vaporization by heating impractical due to the high temperatures and fuel cracking as well as issues with preferential vaporization. To this end, a new experiment was designed and tested to evaluate the reactivity of lubricating oils using an existing shock-tube facility at Texas A&M University equipped with an automotive fuel injector. This experiment disperses a pre-measured amount of lubricant into a region of high-temperature air to study auto-ignition. To ensure proper dispersal, a laser extinction diagnostic was used to measure the lubricant particles behind the reflected shock as they are dispersed and vaporized. An OH* chemiluminescence diagnostic measuring light emitted during combustion at around 306 nm was used to determine ignition delay time. Pressure was also measured at the sidewall and endwall positions for test repeatability and exothermicity of the experiments. The methods were validated by conducting experiments with ethanol and comparing the results to previous heated shock-tube experiments conducted in the same facility. Using this method, various 32-, 36-, and 46-weight lubricants identified as widely used in the gas turbine industry were tested. Experiments were conducted in post-reflected shock conditions around 1370K (2006 °F) and 1.2 atm, where ignition delay time, peak OH* emission and time-to-peak values were recorded and compared. Ignition was observed for all but one of the lubricants at these conditions, and mild to strong ignition was observed for the other lubricants with varying ignition delay times.


2013 ◽  
Vol 699 ◽  
pp. 111-118
Author(s):  
Rui Shi ◽  
Chang Hui Wang ◽  
Yan Nan Chang

Based on GRI3.0, we study the main chemical kinetics process about reactions of singlet oxygen O2(a1Δg) and ozone O3 with methane-air combustion products, inherit and further develop research in chemical kinetics process with enhancement effects on methane-air mixed combustion by these two molecules. In addition, influence of these two molecules on ignition delay time and flame speed of laminar mixture are considered in our numerical simulation research. This study validates the calculation of this model which cotains these two active molecules by using experimental data of ignition delay time and the speed of laminar flame propagation. In CH4-air mixing laminar combustion under fuel-lean condition(ф=0.5), flame speed will be increased, and singlet oxygen with 10% of mole fraction increases it by 80.34%, while ozone with 10% mole fraction increase it by 127.96%. It mainly because active atoms and groups(O, H, OH, CH3, CH2O, CH3O, etc) will be increased a lot after adding active molecules in the initial stage, and chain reaction be reacted greatly, inducing shortening of reaction time and accelerating of flame speed. Under fuel rich(ф=1.5), accelerating of flame speed will be weakened slightly, singlet oxygen with 10% in molecular oxygen increase it by 48.93%, while ozone with 10% increase it by 70.25%.


Author(s):  
Amrit Bikram Sahu ◽  
A. Abd El-Sabor Mohamed ◽  
Snehasish Panigrahy ◽  
Gilles Bourque ◽  
Henry Curran

Abstract New ignition delay time measurements of natural gas mixtures enriched with small amounts of n-hexane and n-heptane were performed in a rapid compression machine to interpret the sensitization effect of heavier hydrocarbons on auto-ignition at gas-turbine relevant conditions. The experimental data of natural gas mixtures containing alkanes from methane to n-heptane were carried out over a wide range of temperatures (840–1050 K), pressures (20–30 bar), and equivalence ratios (φ = 0.5 and 1.5). The experiments were complimented with numerical simulations using a detailed kinetic model developed to investigate the effect of n-hexane and n-heptane additions. Model predictions show that the addition of even small amounts (1–2%) of n-hexane and n-heptane can lead to increase in reactivity by ∼40–60 ms at compressed temperature (TC) = 700 K. The ignition delay time (IDT) of these mixtures decrease rapidly with an increase in concentration of up to 7.5% but becomes almost independent of the C6/C7 concentration beyond 10%. This sensitization effect of C6 and C7 is also found to be more pronounced in the temperature range 700–900 K compared to that at higher temperatures (> 900 K). The reason is attributed to the dependence of IDT primarily on H2O2(+M) ↔ 2ȮH(+M) at higher temperatures while the fuel dependent reactions such as H-atom abstraction, RȮ2 dissociation or Q.OOH + O2 reactions are less important compared to 700–900 K, where they are very important.


Author(s):  
David Beerer ◽  
Vincent McDonell ◽  
Scott Samuelsen ◽  
Leonard Angello

Compositional variation of global gas supplies is becoming a growing concern. Both the range and rate-of-change of this variation is expected to increase as global markets for Liquefied Natural Gas (LNG) continue to expand. Greater fuel composition variation poses increased operational risk to gas turbine engines employing lean premixed combustion systems. Information on ignition delay at high pressure and intermediate temperatures is valuable for lean premixed gas turbine design. In order to avoid autoignition of the fuel/air mixture within the premixer, the ignition delay time must be greater than the residence time. Evaluating the residence time is not a straight forward task because of the complex aerodynamics due to recirculation zones, separation regions, and boundary layers effects which may create regions where the local residence times may be longer than the bulk or average residence time. Additionally, reliable experiments on ignition delay at gas turbine conditions are difficult to conduct. Devices for testing include shock tubes, rapid compression machine and flow reactors. In a flow reactor ignition delay data are commonly determined by measuring the distance from the fuel injector to the reaction front (L) and dividing it by the bulk or average flow velocity (U) under steady flow conditions to obtain a bulk residence time which is assumed to be equal to the ignition delay time. However this method is susceptible to the same boundary layer effects or recirculation zones found in premixers. An alternative method for obtaining ignition delay data in a flow reactor is presented herein, where ignition delay times are obtained by measuring the time difference between fuel injection and ignition using high speed instrumentation. Ignition delay times for methane, ethane and propane at gas turbine conditions were in the range of 40–500 ms. The results obtained show excellent agreement with recently proposed chemical mechanisms for hydrocarbons at low temperature/high pressure conditions.


2017 ◽  
Vol 178 ◽  
pp. 205-216 ◽  
Author(s):  
Mohammed AlAbbad ◽  
Tamour Javed ◽  
Fethi Khaled ◽  
Jihad Badra ◽  
Aamir Farooq

Author(s):  
Andreas Koch ◽  
Clemens Naumann ◽  
Wolfgang Meier ◽  
Manfred Aigner

The objective of this work was the improvement of methods for predicting autoignition in turbulent flows of different natural gas mixtures and air. Measurements were performed in a mixing duct where fuel was laterally injected into a turbulent flow of preheated and pressurized air. To study the influence of higher order hydrocarbons on autoignition, natural gas was mixed with propane up to 20% by volume at pressures up to 15 bar. During a measurement cycle, the air temperature was increased until autoignition occurred. The ignition process was observed by high-speed imaging of the flame chemiluminescence. In order to attribute a residence time (ignition delay time) to the locations where autoignition was detected the flow field and its turbulent fluctuations were simulated by numerical codes. These residence times were compared to calculated ignition delay times using detailed chemical simulations. The measurement system and data evaluation procedure are described and preliminary results are presented. An increase in pressure and in fraction of propane in the natural gas both reduced the ignition delay time. The measured ignition delay times were systematically longer than the predicted ones for temperatures above 950 K. The results are important for the design process of gas turbine combustors and the studies also demonstrate a procedure for the validation of design tools under relevant conditions.


2019 ◽  
Vol 203 ◽  
pp. 143-156 ◽  
Author(s):  
L.T. Pinzón ◽  
O. Mathieu ◽  
C.R. Mulvihill ◽  
I. Schoegl ◽  
E.L. Petersen

2006 ◽  
Vol 129 (3) ◽  
pp. 655-663 ◽  
Author(s):  
P. Gokulakrishnan ◽  
G. Gaines ◽  
J. Currano ◽  
M. S. Klassen ◽  
R. J. Roby

Experimental and kinetic modeling of kerosene-type fuels is reported in the present work with special emphasis on the low-temperature oxidation phenomenon relevant to gas turbine premixing conditions. Experiments were performed in an atmospheric pressure, tubular flow reactor to measure ignition delay time of kerosene (fuel–oil No. 1) in order to study the premature autoignition of liquid fuels at gas turbine premixing conditions. The experimental results indicate that the ignition delay time decreases exponentially with the equivalence ratio at fuel-lean conditions. However, for very high equivalence ratios (>2), the ignition delay time approaches an asymptotic value. Equivalence ratio fluctuations in the premixer can create conditions conducive for autoignition of fuel in the premixer, as the gas turbines generally operate under lean conditions during premixed prevaporized combustion. Ignition delay time measurements of stoichiometric fuel–oil No. 1∕air mixture at 1 atm were comparable with that of kerosene type Jet-A fuel available in the literature. A detailed kerosene mechanism with approximately 1400 reactions of 550 species is developed using a surrogate mixture of n-decane, n-propylcyclohexane, n-propylbenzene, and decene to represent the major chemical constituents of kerosene, namely n-alkanes, cyclo-alkanes, aromatics, and olefins, respectively. As the major portion of kerosene-type fuels consists of alkanes, which are relatively more reactive at low temperatures, a detailed kinetic mechanism is developed for n-decane oxidation including low temperature reaction kinetics. With the objective of achieving a more comprehensive kinetic model for n-decane, the mechanism is validated against target data for a wide range of experimental conditions available in the literature. The data include shock tube ignition delay time measurements, jet-stirred reactor reactivity profiles, and plug-flow reactor species time–history profiles. The kerosene model predictions agree fairly well with the ignition delay time measurements obtained in the present work as well as the data available in the literature for Jet A. The kerosene model was able to reproduce the low-temperature preignition reactivity profile of JP-8 obtained in a flow reactor at 12 atm. Also, the kerosene mechanism predicts the species reactivity profiles of Jet A-1 obtained in a jet-stirred reactor fairly well.


Sign in / Sign up

Export Citation Format

Share Document