Singular Integral Equation Method for Interaction Between Elliptical Inclusions

1998 ◽  
Vol 65 (2) ◽  
pp. 310-319 ◽  
Author(s):  
Nao-Aki Noda ◽  
Tadatoshi Matsuo

This paper deals with numerical solutions of singular integral equations in interaction problems of elliptical inclusions under general loading conditions. The stress and displacement fields due to a point force in infinite plates are used as fundamental solutions. Then, the problems are formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where the unknowns are the body force densities distributed in infinite plates having the same elastic constants as those of the matrix and inclusions. To determine the unknown body force densities to satisfy the boundary conditions, four auxiliary unknown functions are derived from each body force density. It is found that determining these four auxiliary functions in the range 0≦φk≦π/2 is equivalent to determining an original unknown density in the range 0≦φk≦2π. Then, these auxiliary unknowns are approximated by using fundamental densities and polynomials. Initially, the convergence of the results such as unknown densities and interface stresses are confirmed with increasing collocation points. Also, the accuracy is verified by examining the boundary conditions and relations between interface stresses and displacements. Randomly or regularly distributed elliptical inclusions can be treated by combining both solutions for remote tension and shear shown in this study.

Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 140
Author(s):  
Liudmila Nickelson ◽  
Raimondas Pomarnacki ◽  
Tomyslav Sledevič ◽  
Darius Plonis

This paper presents a rigorous solution of the Helmholtz equation for regular waveguide structures with the finite sizes of all cross-section elements that may have an arbitrary shape. The solution is based on the theory of Singular Integral Equations (SIE). The SIE method proposed here is used to find a solution to differential equations with a point source. This fundamental solution of the equations is then applied in an integral representation of the general solution for our boundary problem. The integral representation always satisfies the differential equations derived from the Maxwell’s ones and has unknown functions μe and μh that are determined by the implementation of appropriate boundary conditions. The waveguide structures under consideration may contain homogeneous isotropic materials such as dielectrics, semiconductors, metals, and so forth. The proposed algorithm based on the SIE method also allows us to compute waveguide structures containing materials with high losses. The proposed solution allows us to satisfy all boundary conditions on the contour separating materials with different constitutive parameters and the condition at infinity for open structures as well as the wave equation. In our solution, the longitudinal components of the electric and magnetic fields are expressed in the integral form with the kernel consisting of an unknown function μe or μh and the Hankel function of the second kind. It is important to note that the above-mentioned integral representation is transformed into the Cauchy type integrals with the density function μe or μh at certain singular points of the contour of integration. The properties and values of these integrals are known under certain conditions. Contours that limit different materials of waveguide elements are divided into small segments. The number of segments can determine the accuracy of the solution of a problem. We assume for simplicity that the unknown functions μe and μh, which we are looking for, are located in the middle of each segment. After writing down the boundary conditions for the central point of every segment of all contours, we receive a well-conditioned algebraic system of linear equations, by solving which we will define functions μe and μh that correspond to these central points. Knowing the densities μe, μh, it is easy to calculate the dispersion characteristics of the structure as well as the electromagnetic (EM) field distributions inside and outside the structure. The comparison of our calculations by the SIE method with experimental data is also presented in this paper.


2021 ◽  
pp. 108128652110431
Author(s):  
Rui Cao ◽  
Changwen Mi

This paper solves the frictionless receding contact problem between a graded and a homogeneous elastic layer due to a flat-ended rigid indenter. Although its Poisson’s ratio is kept as a constant, the shear modulus in the graded layer is assumed to exponentially vary along the thickness direction. The primary goal of this study is to investigate the functional dependence of both contact pressures and the extent of receding contact on the mechanical and geometric properties. For verification and validation purposes, both theoretical analysis and finite element modelings are conducted. In the analytical formulation, governing equations and boundary conditions of the double contact problem are converted into dual singular integral equations of Cauchy type with the help of Fourier integral transforms. In view of the drastically different singularity behavior of the stationary and receding contact pressures, Gauss–Chebyshev quadratures and collocations of both the first and the second kinds have to be jointly used to transform the dual singular integral equations into an algebraic system. As the resultant algebraic equations are nonlinear with respect to the extent of receding contact, an iterative algorithm based on the method of steepest descent is further developed. The semianalytical results are extensively verified and validated with those obtained from the graded finite element method, whose implementation details are also given for easy reference. Results from both approaches reveal that the property gradation, indenter width, and thickness ratio all play significant roles in the determination of both contact pressures and the receding contact extent. An appropriate combination of these parameters is able to tailor the double contact properties as desired.


Sign in / Sign up

Export Citation Format

Share Document