Numerical solutions of singular integral equations having Cauchy-type singular kernel by means of expansion method

1993 ◽  
Vol 63 (3) ◽  
pp. 229-245 ◽  
Author(s):  
Nao-Aki Noda ◽  
Tadatoshi Matsuo
1998 ◽  
Vol 65 (2) ◽  
pp. 310-319 ◽  
Author(s):  
Nao-Aki Noda ◽  
Tadatoshi Matsuo

This paper deals with numerical solutions of singular integral equations in interaction problems of elliptical inclusions under general loading conditions. The stress and displacement fields due to a point force in infinite plates are used as fundamental solutions. Then, the problems are formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where the unknowns are the body force densities distributed in infinite plates having the same elastic constants as those of the matrix and inclusions. To determine the unknown body force densities to satisfy the boundary conditions, four auxiliary unknown functions are derived from each body force density. It is found that determining these four auxiliary functions in the range 0≦φk≦π/2 is equivalent to determining an original unknown density in the range 0≦φk≦2π. Then, these auxiliary unknowns are approximated by using fundamental densities and polynomials. Initially, the convergence of the results such as unknown densities and interface stresses are confirmed with increasing collocation points. Also, the accuracy is verified by examining the boundary conditions and relations between interface stresses and displacements. Randomly or regularly distributed elliptical inclusions can be treated by combining both solutions for remote tension and shear shown in this study.


2011 ◽  
Vol 2011 ◽  
pp. 1-16
Author(s):  
Sudeshna Banerjea ◽  
Barnali Dutta ◽  
A. Chakrabarti

A direct function theoretic method is employed to solve certain weakly singular integral equations arising in the study of scattering of surface water waves by vertical barriers with gaps. Such integral equations possess logarithmically singular kernel, and a direct function theoretic method is shown to produce their solutions involving singular integrals of similar types instead of the stronger Cauchy-type singular integrals used by previous workers. Two specific ranges of integration are examined in detail, which involve the following: Case(i) two disjoint finite intervals (0,a)∪(b,c) and (a,b,c being finite ) and Case(ii) a finite union of n disjoint intervals. The connection of such integral equations for Case(i), with a particular water wave scattering problem, is explained clearly, and the important quantities of practical interest (the reflection and transmission coefficients) are determined numerically by using the solution of the associated weakly singular integral equation.


2021 ◽  
pp. 108128652110431
Author(s):  
Rui Cao ◽  
Changwen Mi

This paper solves the frictionless receding contact problem between a graded and a homogeneous elastic layer due to a flat-ended rigid indenter. Although its Poisson’s ratio is kept as a constant, the shear modulus in the graded layer is assumed to exponentially vary along the thickness direction. The primary goal of this study is to investigate the functional dependence of both contact pressures and the extent of receding contact on the mechanical and geometric properties. For verification and validation purposes, both theoretical analysis and finite element modelings are conducted. In the analytical formulation, governing equations and boundary conditions of the double contact problem are converted into dual singular integral equations of Cauchy type with the help of Fourier integral transforms. In view of the drastically different singularity behavior of the stationary and receding contact pressures, Gauss–Chebyshev quadratures and collocations of both the first and the second kinds have to be jointly used to transform the dual singular integral equations into an algebraic system. As the resultant algebraic equations are nonlinear with respect to the extent of receding contact, an iterative algorithm based on the method of steepest descent is further developed. The semianalytical results are extensively verified and validated with those obtained from the graded finite element method, whose implementation details are also given for easy reference. Results from both approaches reveal that the property gradation, indenter width, and thickness ratio all play significant roles in the determination of both contact pressures and the receding contact extent. An appropriate combination of these parameters is able to tailor the double contact properties as desired.


Sign in / Sign up

Export Citation Format

Share Document