Model and Algorithms for Point Cloud Construction Using Digital Projection Patterns

2007 ◽  
Vol 7 (4) ◽  
pp. 372-381 ◽  
Author(s):  
Tao Peng ◽  
Satyandra K. Gupta

This paper describes a computational framework for constructing point clouds using digital projection patterns. The basic principle behind the approach is to project known patterns on the object using a digital projector. A digital camera is then used to take images of the object with the known projection patterns imposed on it. Due to the presence of 3D faces of the object, the projection patterns appear distorted in the images. The images are analyzed to construct the 3D point cloud that is capable of introducing the observed distortions in the images. The approach described in this paper presents three advances over the previously developed approaches. First, it is capable of working with the projection patterns that have variable fringe widths and curved fringes and hence can provide improved accuracy. Second, our algorithm minimizes the number of images needed for creating the 3D point cloud. Finally, we use a hybrid approach that uses a combination of reference plane images and estimated system parameters to construct the point cloud. This approach provides good run-time computational performance and simplifies the system calibration.

Author(s):  
Tao Peng ◽  
Satyandra K. Gupta

Many reverse engineering and inspection applications require generation of point clouds representing faces of physical objects. This paper describes a computational framework for constructing point clouds using digital projection patterns. The basic principle behind the approach is to project known patterns on the object using a digital projector. A digital camera is then used to take images of the object with the known projection patterns imposed on it. Due to the presence of 3-D faces of the object, the projection patterns appear distorted in the images. The images are analyzed to construct the 3-D point cloud that is capable of introducing the observed distortions in the images. The approach described in this paper presents three advances over the previously developed approaches. First, it is capable of working with the projection patterns that have variable fringe widths and curved fringes and hence can provide improved accuracy. Second, our algorithm minimizes the number of images needed for creating the 3-D point cloud. Finally, we use a hybrid approach that uses a combination of reference plane images and estimated system parameters to construct the point cloud. This approach provides good run-time computational performance and simplifies the system calibration.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1228
Author(s):  
Ting On Chan ◽  
Linyuan Xia ◽  
Yimin Chen ◽  
Wei Lang ◽  
Tingting Chen ◽  
...  

Ancient pagodas are usually parts of hot tourist spots in many oriental countries due to their unique historical backgrounds. They are usually polygonal structures comprised by multiple floors, which are separated by eaves. In this paper, we propose a new method to investigate both the rotational and reflectional symmetry of such polygonal pagodas through developing novel geometric models to fit to the 3D point clouds obtained from photogrammetric reconstruction. The geometric model consists of multiple polygonal pyramid/prism models but has a common central axis. The method was verified by four datasets collected by an unmanned aerial vehicle (UAV) and a hand-held digital camera. The results indicate that the models fit accurately to the pagodas’ point clouds. The symmetry was realized by rotating and reflecting the pagodas’ point clouds after a complete leveling of the point cloud was achieved using the estimated central axes. The results show that there are RMSEs of 5.04 cm and 5.20 cm deviated from the perfect (theoretical) rotational and reflectional symmetries, respectively. This concludes that the examined pagodas are highly symmetric, both rotationally and reflectionally. The concept presented in the paper not only work for polygonal pagodas, but it can also be readily transformed and implemented for other applications for other pagoda-like objects such as transmission towers.


Author(s):  
Zhiyong Gao ◽  
Jianhong Xiang

Background: While detecting the object directly from the 3D point cloud, the natural 3D patterns and invariance of 3D data are often obscure. Objective: In this work, we aimed at studying the 3D object detection from discrete, disordered and sparse 3D point clouds. Methods: The CNN is composed of the frustum sequence module, 3D instance segmentation module S-NET, 3D point cloud transformation module T-NET, and 3D boundary box estimation module E-NET. The search space of the object is determined by the frustum sequence module. The instance segmentation of the point cloud is performed by the 3D instance segmentation module. The 3D coordinates of the object are confirmed by the transformation module and the 3D bounding box estimation module. Results: Evaluated on KITTI benchmark dataset, our method outperforms the state of the art by remarkable margins while having real-time capability. Conclusion: We achieve real-time 3D object detection by proposing an improved convolutional neural network (CNN) based on image-driven point clouds.


Aerospace ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 94 ◽  
Author(s):  
Hriday Bavle ◽  
Jose Sanchez-Lopez ◽  
Paloma Puente ◽  
Alejandro Rodriguez-Ramos ◽  
Carlos Sampedro ◽  
...  

This paper presents a fast and robust approach for estimating the flight altitude of multirotor Unmanned Aerial Vehicles (UAVs) using 3D point cloud sensors in cluttered, unstructured, and dynamic indoor environments. The objective is to present a flight altitude estimation algorithm, replacing the conventional sensors such as laser altimeters, barometers, or accelerometers, which have several limitations when used individually. Our proposed algorithm includes two stages: in the first stage, a fast clustering of the measured 3D point cloud data is performed, along with the segmentation of the clustered data into horizontal planes. In the second stage, these segmented horizontal planes are mapped based on the vertical distance with respect to the point cloud sensor frame of reference, in order to provide a robust flight altitude estimation even in presence of several static as well as dynamic ground obstacles. We validate our approach using the IROS 2011 Kinect dataset available in the literature, estimating the altitude of the RGB-D camera using the provided 3D point clouds. We further validate our approach using a point cloud sensor on board a UAV, by means of several autonomous real flights, closing its altitude control loop using the flight altitude estimated by our proposed method, in presence of several different static as well as dynamic ground obstacles. In addition, the implementation of our approach has been integrated in our open-source software framework for aerial robotics called Aerostack.


Author(s):  
M. Leslar

Using unmanned aerial vehicles (UAV) for the purposes of conducting high-accuracy aerial surveying has become a hot topic over the last year. One of the most promising means of conducting such a survey involves integrating a high-resolution non-metric digital camera with the UAV and using the principals of digital photogrammetry to produce high-density colorized point clouds. Through the use of stereo imagery, precise and accurate horizontal positioning information can be produced without the need for integration with any type of inertial navigation system (INS). Of course, some form of ground control is needed to achieve this result. Terrestrial LiDAR, either static or mobile, provides the solution. Points extracted from Terrestrial LiDAR can be used as control in the digital photogrammetry solution required by the UAV. In return, the UAV is an affordable solution for filling in the shadows and occlusions typically experienced by Terrestrial LiDAR. In this paper, the accuracies of points derived from a commercially available UAV solution will be examined and compared to the accuracies achievable by a commercially available LIDAR solution. It was found that the LiDAR system produced a point cloud that was twice as accurate as the point cloud produced by the UAV’s photogrammetric solution. Both solutions gave results within a few centimetres of the control field. In addition the about of planar dispersion on the vertical wall surfaces in the UAV point cloud was found to be multiple times greater than that from the horizontal ground based UAV points or the LiDAR data.


2021 ◽  
Vol 10 (9) ◽  
pp. 617
Author(s):  
Su Yang ◽  
Miaole Hou ◽  
Ahmed Shaker ◽  
Songnian Li

The digital documentation of cultural relics plays an important role in archiving, protection, and management. In the field of cultural heritage, three-dimensional (3D) point cloud data is effective at expressing complex geometric structures and geometric details on the surface of cultural relics, but lacks semantic information. To elaborate the geometric information of cultural relics and add meaningful semantic information, we propose a modeling and processing method of smart point clouds of cultural relics with complex geometries. An information modeling framework for complex geometric cultural relics was designed based on the concept of smart point clouds, in which 3D point cloud data are organized through the time dimension and different spatial scales indicating different geometric details. The proposed model allows smart point clouds or a subset to be linked with semantic information or related documents. As such, this novel information modeling framework can be used to describe rich semantic information and high-level details of geometry. The proposed information model not only expresses the complex geometric structure of the cultural relics and the geometric details on the surface, but also has rich semantic information, and can even be associated with documents. A case study of the Dazu Thousand-Hand Bodhisattva Statue, which is characterized by a variety of complex geometries, reveals that our proposed framework is capable of modeling and processing the statue with excellent applicability and expansibility. This work provides insights into the sustainable development of cultural heritage protection globally.


Author(s):  
Wenju Wang ◽  
Tao Wang ◽  
Yu Cai

AbstractClassifying 3D point clouds is an important and challenging task in computer vision. Currently, classification methods using multiple views lose characteristic or detail information during the representation or processing of views. For this reason, we propose a multi-view attention-convolution pooling network framework for 3D point cloud classification tasks. This framework uses Res2Net to extract the features from multiple 2D views. Our attention-convolution pooling method finds more useful information in the input data related to the current output, effectively solving the problem of feature information loss caused by feature representation and the detail information loss during dimensionality reduction. Finally, we obtain the probability distribution of the model to be classified using a full connection layer and the softmax function. The experimental results show that our framework achieves higher classification accuracy and better performance than other contemporary methods using the ModelNet40 dataset.


2021 ◽  
Vol 12 (1) ◽  
pp. 395
Author(s):  
Ying Wang ◽  
Ki-Young Koo

The 3D point cloud reconstruction from photos taken by an unmanned aerial vehicle (UAV) is a promising tool for monitoring and managing risks of cut-slopes. However, surface changes on cut-slopes are likely to be hidden by seasonal vegetation variations on the cut-slopes. This paper proposes a vegetation removal method for 3D reconstructed point clouds using (1) a 2D image segmentation deep learning model and (2) projection matrices available from photogrammetry. For a given point cloud, each 3D point of it is reprojected into the image coordinates by the projection matrices to determine if it belongs to vegetation or not using the 2D image segmentation model. The 3D points belonging to vegetation in the 2D images are deleted from the point cloud. The effort to build a 2D image segmentation model was significantly reduced by using U-Net with the dataset prepared by the colour index method complemented by manual trimming. The proposed method was applied to a cut-slope in Doam Dam in South Korea, and showed that vegetation from the two point clouds of the cut-slope at winter and summer was removed successfully. The M3C2 distance between the two vegetation-removed point clouds showed a feasibility of the proposed method as a tool to reveal actual change of cut-slopes without the effect of vegetation.


Author(s):  
T. Shinohara ◽  
H. Xiu ◽  
M. Matsuoka

Abstract. This study introduces a novel image to a 3D point-cloud translation method with a conditional generative adversarial network that creates a large-scale 3D point cloud. This can generate supervised point clouds observed via airborne LiDAR from aerial images. The network is composed of an encoder to produce latent features of input images, generator to translate latent features to fake point clouds, and discriminator to classify false or real point clouds. The encoder is a pre-trained ResNet; to overcome the difficulty of generating 3D point clouds in an outdoor scene, we use a FoldingNet with features from ResNet. After a fixed number of iterations, our generator can produce fake point clouds that correspond to the input image. Experimental results show that our network can learn and generate certain point clouds using the data from the 2018 IEEE GRSS Data Fusion Contest.


2018 ◽  
Vol 9 (2) ◽  
pp. 37-53
Author(s):  
Sinh Van Nguyen ◽  
Ha Manh Tran ◽  
Minh Khai Tran

Building 3D objects or reconstructing their surfaces from 3D point cloud data are researched activities in the field of geometric modeling and computer graphics. In the recent years, they are also studied and used in some fields such as: graph models and simulation; image processing or restoration of digital heritages. This article presents an improved method for restoring the shape of 3D point cloud surfaces. The method is a combination of creating a Bezier surface patch and computing tangent plane of 3D points to fill holes on a surface of 3D point clouds. This method is described as follows: at first, a boundary for each hole on the surface is identified. The holes are then filled by computing Bezier curves of surface patches to find missing points. After that, the holes are refined based on two steps (rough and elaborate) to adjust the inserted points and preserve the local curvature of the holes. The contribution of the proposed method has been shown in processing time and the novelty of combined computation in this method has preserved the initial shape of the surface


Sign in / Sign up

Export Citation Format

Share Document