System Evaluation and LBTU Fuel Combustion Studies for IGCC Power Generation

1995 ◽  
Vol 117 (4) ◽  
pp. 673-677 ◽  
Author(s):  
C. S. Cook ◽  
J. C. Corman ◽  
D. M. Todd

The integration of gas turbines and combined cycle systems with advances in coal gasification and gas stream cleanup systems will result in economically viable IGCC systems. Optimization of IGCC systems for both emission levels and cost of electricity is critical to achieving this goal. A technical issue is the ability to use a wide range of coal and petroleum-based fuel gases in conventional gas turbine combustor hardware. In order to characterize the acceptability of these syngases for gas turbines, combustion studies were conducted with simulated coal gases using full-scale advanced gas turbine (7F) combustor components. It was found that NOx emissions could be correlated as a simple function of stoichiometric flame temperature for a wide range of heating values while CO emissions were shown to depend primarily on the H2 content of the fuel below heating values of 130 Btu/scf (5125 kJ/NM3) and for H2/CO ratios less than unity. The test program further demonstrated the capability of advanced can-annular combustion systems to burn fuels from air-blown gasifiers with fuel lower heating values as low as 90 Btu/scf (3548 kJ/NM3) at 2300°F (1260°C) firing temperature. In support of ongoing economic studies, numerous IGCC system evaluations have been conducted incorporating a majority of the commercial or near-commercial coal gasification systems coupled with “F” series gas turbine combined cycles. Both oxygen and air-blown configurations have been studied, in some cases with high and low-temperature gas cleaning systems. It has been shown that system studies must start with the characteristics and limitations of the gas turbine if output and operating economics are to be optimized throughout the range of ambient operating temperature and load variation.

Author(s):  
C. S. Cook ◽  
J. C. Corman ◽  
D. M. Todd

The integration of gas turbines and combined cycle systems with advances in coal gasification and gas stream cleanup systems will result in economically viable IGCC systems. Optimization of IGCC systems for both emission levels and cost of electricity is critical to achieving this goal. A technical issue is the ability to use a wide range of coal and petroleum-based fuel gases in conventional gas turbine combustor hardware. In order to characterize the acceptability of these syngases for gas turbines, combustion studies were conducted with simulated coal gases using full scale advanced gas turbine (7F) combustor components. It was found that NOx emissions could be correlated as a simple function of stoichiometric flame temperature for a wide range of heating values while CO emissions were shown to depend primarily on the H2 content of the fuel below heating values of 130 Btu/scf (5125 kJ/NM3) and for H2/CO ratios less than unity. The test program further demonstrated the capability of advanced can-annular combustion systems to burn fuels from air-blown gasifiers with fuel lower heating values as low as 90 Btu/scf (3548 kJ/NM3) at 2300 F (1260 C) firing temperature. In support of ongoing economic studies, numerous IGCC system evaluations have been conducted incorporating a majority of the commercial or near commercial coal gasification systems coupled with “F” series gas turbine combined cycles. Both oxygen and air-blown configurations have been studied, in some cases with high and low temperature gas cleaning systems. It has been shown that system studies must start with the characteristics and limitations of the gas turbine if output and operating economics are to be optimized throughout the range of ambient operating temperature and load variation.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Shi Liu ◽  
Hong Yin ◽  
Yan Xiong ◽  
Xiaoqing Xiao

Heavy duty gas turbines are the core components in the integrated gasification combined cycle (IGCC) system. Different from the conventional fuel for gas turbine such as natural gas and light diesel, the combustible component acquired from the IGCC system is hydrogen-rich syngas fuel. It is important to modify the original gas turbine combustor or redesign a new combustor for syngas application since the fuel properties are featured with the wide range hydrogen and carbon monoxide mixture. First, one heavy duty gas turbine combustor which adopts natural gas and light diesel was selected as the original type. The redesign work mainly focused on the combustor head and nozzle arrangements. This paper investigated two feasible combustor arrangements for the syngas utilization including single nozzle and multiple nozzles. Numerical simulations are conducted to compare the flow field, temperature field, composition distributions, and overall performance of the two schemes. The obtained results show that the flow structure of the multiple nozzles scheme is better and the temperature distribution inside the combustor is more uniform, and the total pressure recovery is higher than the single nozzle scheme. Through the full scale test rig verification, the combustor redesign with multiple nozzles scheme is acceptable under middle and high pressure combustion test conditions. Besides, the numerical computations generally match with the experimental results.


2006 ◽  
Vol 128 (2) ◽  
pp. 326-335 ◽  
Author(s):  
R. Bhargava ◽  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto

In recent years, deregulation in the power generation market worldwide combined with significant variation in fuel prices and a need for flexibility in terms of power augmentation specially during periods of high electricity demand (summer months or noon to 6:00 p.m.) has forced electric utilities, cogenerators and independent power producers to explore new power generation enhancement technologies. In the last five to ten years, inlet fogging approach has shown more promising results to recover lost power output due to increased ambient temperature compared to the other available power enhancement techniques. This paper presents the first systematic study on the effects of both inlet evaporative and overspray fogging on a wide range of combined cycle power plants utilizing gas turbines available from the major gas turbine manufacturers worldwide. A brief discussion on the thermodynamic considerations of inlet and overspray fogging including the effect of droplet dimension is also presented. Based on the analyzed systems, the results show that high pressure inlet fogging influences performance of a combined cycle power plant using an aero-derivative gas turbine differently than with an advanced technology or a traditional gas turbine. Possible reasons for the observed differences are discussed.


Author(s):  
R. Bhargava ◽  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto

In recent years, deregulation in the power generation market worldwide combined with significant variation in fuel prices and a need for flexibility in terms of power augmentation specially during periods of high electricity demand (summer months or noon to 6 PM) has forced electric utilities, cogenerators and independent power producers to explore new power generation enhancement technologies. In the last 5–10 years, inlet fogging approach has shown more promising results to recover lost power output due to increased ambient temperature compared to the other available power enhancement techniques. This paper presents the first systematic study on the effects of both inlet evaporative and overspray fogging on a wide range of combined cycle power plants utilizing gas turbines available from the major gas turbine manufacturers worldwide. A brief discussion on the thermodynamic considerations of inlet and overspray fogging including the effect of droplet dimension is also presented. Based on the analyzed systems, the results show that high pressure inlet fogging influences performance of a combined cycle power plant using an aero-derivative gas turbine differently than with an advanced technology or a traditional gas turbine. Possible reasons for the observed differences are discussed.


Author(s):  
M. Sato ◽  
T. Ninomiya ◽  
T. Nakata ◽  
T. Yoshine ◽  
M. Yamada ◽  
...  

From the view point of future coal utilization technology for the thermal power generation systems, the coal gasification combined cycle system has drawn special interest recently. In the coal gasification combined cycle power generation system, it is necessary to develop a high temperature gas turbine combustor using a low–BTU gas (LBG) which has high thermal efficiency and low emissions. In Japan a development program on the coal gasification combined cycle power generation system has started in 1985 by the national government and Japanese electric companies. In this program, is planned to develop the 1300 °C class gas turbines. However, in the case of using a hot type fuel gas cleaning system, the coal gas fuel to be supplied to gas turbines will contain ammonia. Ammonia will be converted to nitric oxides in the combustion process in gas turbines. Therefore, low fuel–NOx combustion technology is one of the most important research subjects. This paper describes low fuel–NOx combustion technology for 1300 °C class gas turbine combustor using low BTU coal gas fuel. Authors have showed that the rich–lean combustion method is effective to decrease fuel–NOx (1). In general in rich–lean combustion method, the fuel–NOx decreases, as the primary zone becomes richer. But flameholding becomes very difficult in even rich primary zone. For this reason this combustor was designed to have a flameholder with pilot flame. Combustion tests were conducted by using a full scale combustor used in 150 MW gas turbine at the atmospheric pressure condition.


Author(s):  
Toshihiko Nakata ◽  
Mikio Sato ◽  
Toru Ninomiya ◽  
Toshiyuki Yoshine ◽  
Masahiko Yamada

Developing integrated coal gasification combined cycle systems ensures that Japan will have cost–effective and environmentally sound options for supplying future power generation needs. The reduction of NOx emissions and increasing the inlet temperature of gas turbines are the most significant issues in gas turbine development in IGCC. The coal gasified fuel, which is produced in a coal gasifier of air–blown entrained–flow type has calorific value as low as 1/10 of natural gas. Furthermore the fuel gas contains ammonia when a gas cleaning system is a hot type, and ammonia will be converted to nitrogen oxides in the combustion process of a gas turbine. The study is performed in 1300°C–class gas turbine combustor firing coal–gasified fuel in IGCC power generation systems. In the previous study the advanced rich–lean combustor of 150–MW class gas turbine was designed to hold stable combustion burning low–Btu gas fuel and to reduce fuel NOx emission that is produced from the ammonia in the fuel. By testing it under atmospheric pressure conditions, we have studied the effects of fuel parameters on combustor performances and listed the basic data for development applications. In this study, by testing it under pressurized conditions, we have obtained a very significant result through investigating the effect of pressure on combustion characteristics and wish to provide herein a summary of our findings.


Author(s):  
M. Sato ◽  
T. Abe ◽  
T. Ninomiya ◽  
T. Nakata ◽  
T. Yoshine ◽  
...  

From the view point of future coal utilization technology for the thermal power generation systems, the coal gasification combined cycle system has drawn special interest recently. In the coal gasification combined cycle power generation system, it is necessary to develop a high temperature gas turbine combustor using a low-BTU gas (LBG) which has high thermal efficiency and low emissions. In Japan a development program of the coal gasification combined cycle power generation system has started in 1985 by the national government and Japanese electric companies. In this program, 1300°C class gas turbines will be developed. If the fuel gas cleaning system is a hot type, the coal gaseous fuel to be supplied to gas turbines will contain ammonia. Ammonia will be converted to nitric oxides in the combustion process in gas turbines. Therefore, low fuel-NOx combustion technology will be one of the most important research subjects. This paper describes low fuel-NOx combustion technology for 1300°C class gas turbine combustors using coal gaseous low-BTU fuel as well as combustion characteristics and carbon monoxide emission characteristics. Combustion tests were conducted using a full-scale combustor used for the 150 MW gas turbine at the atmospheric pressure. Furthermore, high pressure combustion tests were conducted using a half-scale combustor used for the 1 50 MW gas turbine.


Author(s):  
W. P. Parks ◽  
R. R. Ramey ◽  
D. C. Rawlins ◽  
J. R. Price ◽  
M. Van Roode

A Babcock and Wilcox - Solar Turbines Team has completed a program to assess the potential for structural ceramic composites in turbines for direct coal-fired or coal gasification environments. A review is made of the existing processes in direct coal firing, pressurized fluid bed combustors, and coal gasification combined cycle systems. Material requirements in these areas were also discussed. The program examined the state-of-the-art in ceramic composite materials. Utilization of ceramic composites in the turbine rotor blades and nozzle vanes would provide the most benefit. A research program designed to introduce ceramic composite components to these turbines was recommended.


Author(s):  
M. Huth ◽  
A. Heilos ◽  
G. Gaio ◽  
J. Karg

The Integrated Gasification Combined Cycle concept is an emerging technology that enables an efficient and clean use of coal as well as residuals in power generation. After several years of development and demonstration operation, now the technology has reached the status for commercial operation. SIEMENS is engaged in 3 IGCC plants in Europe which are currently in operation. Each of these plants has specific characteristics leading to a wide range of experiences in development and operation of IGCC gas turbines fired with low to medium LHV syngases. The worlds first IGCC plant of commercial size at Buggenum/Netherlands (Demkolec) has already demonstrated that IGCC is a very efficient power generation technology for a great variety of coals and with a great potential for future commercial market penetration. The end of the demonstration period of the Buggenum IGCC plant and the start of its commercial operation has been dated on January 1, 1998. After optimisations during the demonstration period the gas turbine is running with good performance and high availability and has exceeded 18000 hours of operation on coal gas. The air-side fully integrated Buggenum plant, equipped with a Siemens V94.2 gas turbine, has been the first field test for the Siemens syngas combustion concept, which enables operation with very low NOx emission levels between 120–600 g/MWh NOx corresponding to 6–30 ppm(v) (15%O2) and less than 5 ppm(v) CO at baseload. During early commissioning the syngas nozzle has been recognised as the most important part with strong impact on combustion behaviour. Consequently the burner design has been adjusted to enable quick and easy changes of the important syngas nozzle. This design feature enables fast and efficient optimisations of the combustion performance and the possibility for easy adjustments to different syngases with a large variation in composition and LHV. During several test runs the gas turbine proved the required degree of flexibility and the capability to handle transient operation conditions during emergency cases. The fully air-side integrated IGCC plant at Puertollano/Spain (Elcogas), using the advanced Siemens V94.3 gas turbine (enhanced efficiency), is now running successfully on coal gas. The coal gas composition at this plant is similar to the Buggenum example. The emission performance is comparable to Buggenum with its very low emission levels. Currently the gas turbine is running for the requirements of final optimization runs of the gasifier unit. The third IGCC plant (ISAB) equipped with Siemens gas turbine technology is located at Priolo near Siracusa at Sicilly/Italy. Two Siemens V94.2K (modified compressor) gas turbines are part of this “air side non-integrated” IGCC plant. The feedstock of the gasification process is a refinery residue (asphalt). The LHV is almost twice compared to the Buggenum or Puertollano case. For operation with this gas, the coal gas burner design was adjusted and extensively tested. IGCC operation without air extraction has been made possible by modifying the compressor, giving enhanced surge margins. Commissioning on syngas for the first of the two gas turbines started in mid of August 1999 and was almost finished at the end of August 1999. The second machine followed at the end of October 1999. Since this both machines are released for operation on syngas up to baseload.


Author(s):  
Maher A. Elmasri

A fast, interactive, flexible computer program has been developed to facilitate system selection and design for gas turbine based power and cogeneration plants. A data base containing ISO performance information on forty-two gas turbines is coupled to an off-design model to predict engine characteristics for different site and installation parameters. A heat recovery steam generator (HRSG) model allows boiler size and cost to be estimated as a function of the system’s technical parameters. The model can handle HRSG’s with up to two live steam pressures plus a third feedheating/deaerating drum. Five basic types of combined cycle are covered with up to four different process steam streams for cogeneration or gas turbine injection. Two additional feedheating steam bleeds are supported for condensing combined cycles. The program is intelligent with some internal decision making capabilities regarding process steam sourcing and flow directions and will automatically select the appropriate heat and mass balance procedures to cover a wide variety of process flow schematics. The program provides plotter outputs to show the cycle process flow schematic, T-s and h-s diagrams, and HRSG temperature profiles. An application of GTPRO in analyzing some technical and economic performance trade-offs for two-pressure combined cycles is presented.


Sign in / Sign up

Export Citation Format

Share Document