Operation Experiences of Siemens IGCC Gas Turbines Using Gasification Products From Coal and Refinery Residues

Author(s):  
M. Huth ◽  
A. Heilos ◽  
G. Gaio ◽  
J. Karg

The Integrated Gasification Combined Cycle concept is an emerging technology that enables an efficient and clean use of coal as well as residuals in power generation. After several years of development and demonstration operation, now the technology has reached the status for commercial operation. SIEMENS is engaged in 3 IGCC plants in Europe which are currently in operation. Each of these plants has specific characteristics leading to a wide range of experiences in development and operation of IGCC gas turbines fired with low to medium LHV syngases. The worlds first IGCC plant of commercial size at Buggenum/Netherlands (Demkolec) has already demonstrated that IGCC is a very efficient power generation technology for a great variety of coals and with a great potential for future commercial market penetration. The end of the demonstration period of the Buggenum IGCC plant and the start of its commercial operation has been dated on January 1, 1998. After optimisations during the demonstration period the gas turbine is running with good performance and high availability and has exceeded 18000 hours of operation on coal gas. The air-side fully integrated Buggenum plant, equipped with a Siemens V94.2 gas turbine, has been the first field test for the Siemens syngas combustion concept, which enables operation with very low NOx emission levels between 120–600 g/MWh NOx corresponding to 6–30 ppm(v) (15%O2) and less than 5 ppm(v) CO at baseload. During early commissioning the syngas nozzle has been recognised as the most important part with strong impact on combustion behaviour. Consequently the burner design has been adjusted to enable quick and easy changes of the important syngas nozzle. This design feature enables fast and efficient optimisations of the combustion performance and the possibility for easy adjustments to different syngases with a large variation in composition and LHV. During several test runs the gas turbine proved the required degree of flexibility and the capability to handle transient operation conditions during emergency cases. The fully air-side integrated IGCC plant at Puertollano/Spain (Elcogas), using the advanced Siemens V94.3 gas turbine (enhanced efficiency), is now running successfully on coal gas. The coal gas composition at this plant is similar to the Buggenum example. The emission performance is comparable to Buggenum with its very low emission levels. Currently the gas turbine is running for the requirements of final optimization runs of the gasifier unit. The third IGCC plant (ISAB) equipped with Siemens gas turbine technology is located at Priolo near Siracusa at Sicilly/Italy. Two Siemens V94.2K (modified compressor) gas turbines are part of this “air side non-integrated” IGCC plant. The feedstock of the gasification process is a refinery residue (asphalt). The LHV is almost twice compared to the Buggenum or Puertollano case. For operation with this gas, the coal gas burner design was adjusted and extensively tested. IGCC operation without air extraction has been made possible by modifying the compressor, giving enhanced surge margins. Commissioning on syngas for the first of the two gas turbines started in mid of August 1999 and was almost finished at the end of August 1999. The second machine followed at the end of October 1999. Since this both machines are released for operation on syngas up to baseload.

2006 ◽  
Vol 128 (2) ◽  
pp. 326-335 ◽  
Author(s):  
R. Bhargava ◽  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto

In recent years, deregulation in the power generation market worldwide combined with significant variation in fuel prices and a need for flexibility in terms of power augmentation specially during periods of high electricity demand (summer months or noon to 6:00 p.m.) has forced electric utilities, cogenerators and independent power producers to explore new power generation enhancement technologies. In the last five to ten years, inlet fogging approach has shown more promising results to recover lost power output due to increased ambient temperature compared to the other available power enhancement techniques. This paper presents the first systematic study on the effects of both inlet evaporative and overspray fogging on a wide range of combined cycle power plants utilizing gas turbines available from the major gas turbine manufacturers worldwide. A brief discussion on the thermodynamic considerations of inlet and overspray fogging including the effect of droplet dimension is also presented. Based on the analyzed systems, the results show that high pressure inlet fogging influences performance of a combined cycle power plant using an aero-derivative gas turbine differently than with an advanced technology or a traditional gas turbine. Possible reasons for the observed differences are discussed.


Author(s):  
R. Bhargava ◽  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto

In recent years, deregulation in the power generation market worldwide combined with significant variation in fuel prices and a need for flexibility in terms of power augmentation specially during periods of high electricity demand (summer months or noon to 6 PM) has forced electric utilities, cogenerators and independent power producers to explore new power generation enhancement technologies. In the last 5–10 years, inlet fogging approach has shown more promising results to recover lost power output due to increased ambient temperature compared to the other available power enhancement techniques. This paper presents the first systematic study on the effects of both inlet evaporative and overspray fogging on a wide range of combined cycle power plants utilizing gas turbines available from the major gas turbine manufacturers worldwide. A brief discussion on the thermodynamic considerations of inlet and overspray fogging including the effect of droplet dimension is also presented. Based on the analyzed systems, the results show that high pressure inlet fogging influences performance of a combined cycle power plant using an aero-derivative gas turbine differently than with an advanced technology or a traditional gas turbine. Possible reasons for the observed differences are discussed.


Author(s):  
M. Sato ◽  
T. Abe ◽  
T. Ninomiya ◽  
T. Nakata ◽  
T. Yoshine ◽  
...  

From the view point of future coal utilization technology for the thermal power generation systems, the coal gasification combined cycle system has drawn special interest recently. In the coal gasification combined cycle power generation system, it is necessary to develop a high temperature gas turbine combustor using a low-BTU gas (LBG) which has high thermal efficiency and low emissions. In Japan a development program of the coal gasification combined cycle power generation system has started in 1985 by the national government and Japanese electric companies. In this program, 1300°C class gas turbines will be developed. If the fuel gas cleaning system is a hot type, the coal gaseous fuel to be supplied to gas turbines will contain ammonia. Ammonia will be converted to nitric oxides in the combustion process in gas turbines. Therefore, low fuel-NOx combustion technology will be one of the most important research subjects. This paper describes low fuel-NOx combustion technology for 1300°C class gas turbine combustors using coal gaseous low-BTU fuel as well as combustion characteristics and carbon monoxide emission characteristics. Combustion tests were conducted using a full-scale combustor used for the 150 MW gas turbine at the atmospheric pressure. Furthermore, high pressure combustion tests were conducted using a half-scale combustor used for the 1 50 MW gas turbine.


Author(s):  
Stefano Tiribuzi

ENEL operates a dozen combined cycle units whose V94.3A gas turbines are equipped with annular combustors. In such lean premixed gas turbines, particular operation conditions could trigger large pressure oscillations due to thermoacoustic instabilities. The ENEL Research unit is studying this phenomenon in order to find out methods which could avoid or mitigate such events. The use of effective numerical analysis techniques allowed us to investigate the realistic time evolution and behaviour of the acoustic fields associated with this phenomenon. KIEN, an in-house low diffusive URANS code capable of simulating 3D reactive flows, has been used in the Very Rough Grid approach. This approach permits the simulation, with a reasonable computational time, of quite long real transients with a computational domain extended over all the resonant volumes involved in the acoustic phenomenon. The V94.3A gas turbine model was set up with a full combustor 3D grid, going from the compressor outlet up to the turbine inlet, including both the annular plenum and the annular combustion chamber. The grid extends over the entire circular angle, including all the 24 premixed burners. Numerical runs were performed with the normal V94.3A combustor configuration, with input parameters set so as no oscillations develop in the standard ambient conditions. Wide pressure oscillations on the contrary are associated with the circumferential acoustic modes of the combustor, which have their onset and grow when winter ambient conditions are assumed. These results also confirmed that the sustaining mechanism is based on the equivalence ratio fluctuation of premix mixture and that plenum plays an important role in such mechanism. Based on these findings, a system for controlling the thermoacoustic oscillation has been conceived (Patent Pending), which acts on the plenum side of the combustor. This system, called SCAP (Segmentation of Combustor Annular Plenum), is based on the subdivision of the plenum annular volume by means of a few meridionally oriented walls. Repetition of KIEN runs with a SCAP configuration, in which a suitable number of segmentation walls were properly arranged in the annular plenum, demonstrated the effectiveness of this solution in preventing the development of wide thermoacoustic oscillations in the combustor.


Author(s):  
Tadashi Tsuji

Air cooling blades are usually applied to gas turbines as a basic specification. This blade cooling air is almost 20% of compressor suction air and it means that a great deal of compression load is not converted effectively to turbine power generation. This paper proposes the CCM (Cascade Cooling Module) system of turbine blade air line and the consequent improvement of power generation, which is achieved by the reduction of cooling air consumption with effective use of recovered heat. With this technology, current gas turbines (TIT: turbine inlet temperature: 1350°C) can be up-rated to have a relative high efficiency increase. The increase ratio has a potential to be equivalent to that of 1500°C Class GT/CC against 1350°C Class. The CCM system is designed to enable the reduction of blade cooling air consumption by the low air temperature of 15°C instead of the usual 200–400°C. It causes the turbine operating air to increase at the constant suction air condition, which results in the enhancement of power and thermal efficiency. The CCM is installed in the cooling air line and is composed of three stage coolers: steam generator/fuel preheater stage, heat exchanger stage for hot water supplying and cooler stage with chilled water. The coolant (chilled water) for downstream cooler is produced by an absorption refrigerator operated by the hot water of the upstream heat exchanger. The proposed CCM system requires the modification of cooling air flow network in the gas turbine but produces the direct effect on performance enhancement. When the CCM system is applied to a 700MW Class CC (Combined Cycle) plant (GT TIT: 135°C Class), it is expected that there will be a 40–80MW increase in power and +2–5% relative increase in thermal efficiency.


Author(s):  
J. E. Donald Gauthier

This paper describes the results of modelling the performance of several indirectly fired gas turbine (IFGT) power generation system configurations based on four gas turbine class sizes, namely 5 kW, 50 kW, 5 MW and 100 MW. These class sizes were selected to cover a wide range of installations in residential, commercial, industrial and large utility power generation installations. Because the IFGT configurations modelled consist of a gas turbine engine, one or two recuperators and a furnace; for comparison purpose this study also included simulations of simple cycle and recuperated gas turbine engines. Part-load, synchronous-speed simulations were carried out with generic compressor and turbine maps scaled for each engine design point conditions. The turbine inlet temperature (TIT) was varied from the design specification to a practical value for a metallic high-temperature heat exchanger in an IFGT system. As expected, the results showed that the reduced TIT can have dramatic impact on the power output and thermal efficiency when compared to that in conventional gas turbines. However, the simulations also indicated that several configurations can lead to higher performance, even with the reduced TIT. Although the focus of the study is on evaluation of thermodynamic performance, the implications of varying configurations on cost and durability are also discussed.


Author(s):  
Dale Grace ◽  
Thomas Christiansen

Unexpected outages and maintenance costs reduce plant availability and can consume significant resources to restore the unit to service. Although companies may have the means to estimate cash flow requirements for scheduled maintenance and on-going operations, estimates for unplanned maintenance and its impact on revenue are more difficult to quantify, and a large fleet is needed for accurate assessment of its variability. This paper describes a study that surveyed 388 combined-cycle plants based on 164 D/E-class and 224 F-class gas turbines, for the time period of 1995 to 2009. Strategic Power Systems, Inc. (SPS®), manager of the Operational Reliability Analysis Program (ORAP®), identified the causes and durations of forced outages and unscheduled maintenance and established overall reliability and availability profiles for each class of plant in 3 five-year time periods. This study of over 3,000 unit-years of data from 50 Hz and 60 Hz combined-cycle plants provides insight into the types of events having the largest impact on unplanned outage time and cost, as well as the risks of lost revenue and unplanned maintenance costs which affect plant profitability. Outage events were assigned to one of three subsystems: the gas turbine equipment, heat recovery steam generator (HRSG) equipment, or steam turbine equipment, according to the Electric Power Research Institute’s Equipment Breakdown Structure (EBS). Costs to restore the unit to service for each main outage cause were estimated, as were net revenues lost due to unplanned outages. A statistical approach to estimated costs and lost revenues provides a risk-based means to quantify the impact of unplanned events on plant cash flow as a function of class of gas turbine, plant subsystem, and historical timeframe. This statistical estimate of the costs of unplanned outage events provides the risk-based assessment needed to define the range of probable costs of unplanned events. Results presented in this paper demonstrate that non-fuel operation and maintenance costs are increased by roughly 8% in a typical combined-cycle power plant due to unplanned maintenance events, but that a wide range of costs can occur in any single year.


1995 ◽  
Vol 117 (4) ◽  
pp. 673-677 ◽  
Author(s):  
C. S. Cook ◽  
J. C. Corman ◽  
D. M. Todd

The integration of gas turbines and combined cycle systems with advances in coal gasification and gas stream cleanup systems will result in economically viable IGCC systems. Optimization of IGCC systems for both emission levels and cost of electricity is critical to achieving this goal. A technical issue is the ability to use a wide range of coal and petroleum-based fuel gases in conventional gas turbine combustor hardware. In order to characterize the acceptability of these syngases for gas turbines, combustion studies were conducted with simulated coal gases using full-scale advanced gas turbine (7F) combustor components. It was found that NOx emissions could be correlated as a simple function of stoichiometric flame temperature for a wide range of heating values while CO emissions were shown to depend primarily on the H2 content of the fuel below heating values of 130 Btu/scf (5125 kJ/NM3) and for H2/CO ratios less than unity. The test program further demonstrated the capability of advanced can-annular combustion systems to burn fuels from air-blown gasifiers with fuel lower heating values as low as 90 Btu/scf (3548 kJ/NM3) at 2300°F (1260°C) firing temperature. In support of ongoing economic studies, numerous IGCC system evaluations have been conducted incorporating a majority of the commercial or near-commercial coal gasification systems coupled with “F” series gas turbine combined cycles. Both oxygen and air-blown configurations have been studied, in some cases with high and low-temperature gas cleaning systems. It has been shown that system studies must start with the characteristics and limitations of the gas turbine if output and operating economics are to be optimized throughout the range of ambient operating temperature and load variation.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012009
Author(s):  
Jiangpeng Li ◽  
Ziti Liu ◽  
Ruoxuan Ye

Abstract The gas turbine is widely used in various fields, including powering aircraft, ships, trains, and electrical generators. This paper reviews multiple researches about two usages of gas turbines, including power generation and propulsion in aerospace. To be specific, two types of gas turbines have been considered in the power generation section. The first one is the micro-scale turbine, and its working principle has been introduced in section 2.1.1. In addition, six diverse kinds of gas turbines, sorted by a different manufacturer, are introduced in 2.1.2, and it has been found out that, compared to its counterpart, EnerTwin is obviously more sustainable. At the same time, both of them generally cost the same. The second type of gas turbine is used in a combined cycle power plant (CCPP), a popular power station. The working principle of CCPP is introduced in 2.2.1, while several optimization methods are illustrated in 2.2.2, including solar thermal power methods and other novel methods. The result indicates that the most popular method of optimizing the combined cycle gas turbine is integrating an additional unit. One of those outstanding technics is the integrated solar-combined cycle, contributing to 64% of fuel saving with 2.8% of output reduction.


Author(s):  
A. J. Giramonti ◽  
F. L. Robson

Numerous attempts have been made during the past two decades to develop advanced power generation systems which could burn coal or coal-derived fuels both economically and in an environmentally acceptable manner. Although much valuable technology has been derived from these programs, commercially viable power generation alternatives have not yet appeared. One prospective way to expedite the commercialization of advanced coal-fired power systems is to meld the latest gas turbine technology with the emerging technology for producing slurries of water and ultra clean coal. This paper describes a DOE-sponsored program to identify the most attractive gas turbine power system that can operate on slurry fuels. The approach is to use slurries produced from finely ground (<10 microns) coal powder from which most of the ash and sulfur has been removed. The gas turbines will incorporate a rich-burn, quick-quench combustor to minimize conversion of fuel-bound nitrogen to NOx, advanced single crystal alloys with improved hot corrosion resistance and strength, advanced metallic and ceramic coatings with improved erosion and corrosion resistance, and more effective hot section cooling. Two different power plant configurations are covered: a large (nominally 400 MW) combined cycle plant designed for base load applications; and a small (nominally 12 MW) simple-cycle plant designed for peaking, industrial, and cogeneration applications.


Sign in / Sign up

Export Citation Format

Share Document