A Bulk-Flow Analysis of Multiple-Pocket Gas Damper Seals

1999 ◽  
Vol 121 (2) ◽  
pp. 355-363 ◽  
Author(s):  
J. Li ◽  
L. San Andre´s ◽  
J. Vance

A bulk-flow model for calculation of the dynamic force characteristics in a single cavity, multiple-pocket gas damper seal is presented. Flow turbulence is accounted for by using turbulent shear stress parameters and Moody’s friction factors in the circumferential momentum equation. Zeroth-order-equations describe the isothermal flow field for a centered seal, and first-order equations govern the perturbed flow for small amplitude rotor lateral motions. Comparisons to limited measurements from a four-pocket gas damper seal show the current model to predict well the mass flow rate and the direct damping coefficient. For a reference two-bladed teeth-on-stator labyrinth seal, the current model predicts similar rotordynamic coefficients when compared to results from a two control volume, bulk-flow model. Force coefficients from a reference single-cavity, four pocket gas damper depend on the rotor speed and pressure drop with magnitudes decreasing as the rotor whirl frequency increases. The multiple-pocket gas damper seal provides substantially more damping than a conventional labyrinth seal of the same dimensions. The damper seal cross-coupled stiffness coefficients are small though sensitive to the inlet circumferential preswirl flow.

Author(s):  
Jiming Li ◽  
Luis San Andrés ◽  
John Vance

A bulk-flow model for calculation of the dynamic force characteristics in a single cavity, multiple-pocket gas damper seal is presented. Flow turbulence is accounted for by using turbulent shear stress parameters and Moody’s friction factors in the circumferential momentum equation. Zeroth order-equations describe the isothermal flow field for a centered seal, and first-order equations govern the perturbed flow for small amplitude rotor lateral motions. Comparisons to limited measurements from a four-pocket gas damper seal show the current model to predict well the mass flow rate and the direct damping coefficient. For a reference two-bladed teeth-on-stator labyrinth seal, the current model predicts similar rotordynamic coefficients when compared to results from a two control-volume bulk-flow model. Force coefficients from a reference single-cavity, four pocket gas damper depend on the rotor speed and pressure drop with magnitudes decreasing as the rotor whirl frequency increases. The multiple-pocket gas damper seal provides substantially more damping than a conventional labyrinth seal of the same dimensions. The damper seal cross-coupled stiffness coefficients are small though sensitive to the inlet circumferential pre-swirl flow.


1999 ◽  
Vol 121 (2) ◽  
pp. 363-369 ◽  
Author(s):  
Jiming Li ◽  
David Ransom ◽  
Luis San Andre´s ◽  
John Vance

Experiments and field applications have demonstrated that multiple-pocket gas damper seals effectively eliminate subsynchronous vibration and attenuate imbalance response at the critical speeds in turbomachinery. A one-control volume, turbulent bulk-flow model for the prediction of the seal leakage and rotordynamic force coefficients of centered multiple-pocket damper seals is hereby detailed. Comparisons of numerical predictions with experimental force coefficients for a four-pocket damper seal are presented. The bulk-flow model and experiments indicate the seal direct stiffness and damping force coefficients are insensitive to journal speed while the cross-coupled stiffnesses increase slightly. However, the current model overpredicts the direct damping coefficient and underpredicts the direct stiffness coefficient for increasing test pressure ratios. Computed results show that the force coefficients of multiple-pocket gas damper seals are also functions of the rotor excitation frequency.


Author(s):  
Luis San Andre´s ◽  
Thomas Soulas ◽  
Florence Challier ◽  
Patrice Fayolle

The paper introduces a bulk-flow model for prediction of the static and dynamic force coefficients of angled injection Lomakin bearings. The analysis accounts for the flow interaction between the injection orifices, the supply circumferential groove, and the thin film lands. A one control-volume model in the groove is coupled to a bulk-flow model within the film lands of the bearing. Bernoulli-type relationships provide closure at the flow interfaces. Flow turbulence is accounted for with shear stress parameters and Moody’s friction factors. The flow equations are solved numerically using a robust computational method. Comparisons between predictions and experimental results for a tangential-against-rotation injection water Lomakin bearing show the novel model predicts well the leakage and direct stiffness and damping coefficients. Computed cross-coupled stiffness coefficients follow the experimental trends for increasing rotor speeds and supply pressures, but quantitative agreement remains poor. A parameter investigation evidences the effects of the groove and land geometries on the Lomakin bearing flowrate and force coefficients. The orifice injection angle does not influence the bearing static performance, although it largely affects its stability characteristics through the evolution of the cross-coupled stiffnesses. The predictions confirm the promising stabilizing effect of the tangential-against-rotation injection configuration. Two design parameters, comprising the feed orifices area and groove geometry, define the static and dynamic performance of Lomakin bearing. The analysis also shows that the film land clearance and length have a larger impact on the Lomakin bearing rotordynamic behavior than its groove depth and length.


Author(s):  
Filippo Cangioli ◽  
Paolo Pennacchi ◽  
Giacomo Riboni ◽  
Giuseppe Vannini ◽  
Lorenzo Ciuchicchi ◽  
...  

Since the 80s, academic research in the rotordynamics field has developed mathematical treatment for the prediction of the dynamic coefficients of sealing components. Dealing with the straight-through labyrinth seal, Iwatsubo [1], at a first stage, and Childs [2], later on, have developed the one-control volume bulk flow model. The model allows evaluating the surrounding fluid forces acting on the rotor, analyzing the fluid dynamics within the seal: the continuity, circumferential momentum and energy equations are solved for each cavity. To consider axial fluid dynamics, correlations, aiming to estimate the leakage and the pressure distribution, are required. Several correlations have been proposed in the literature for the estimation of the leakage, of the kinetic energy carry-over coefficient (KE), of the discharge coefficient and of the friction factor. After decades of research in the field of seal dynamics, the bulk-flow model has been confirmed as the most popular code in the industries, however, it is not clear which is the best set of correlations for the prediction of seal dynamic coefficients. This paper allows identifying the most accurate combination of correlations to be implemented in the bulk-flow model. The correlations are related to: the leakage formula, the flow coefficient, the KE and the friction factor. Investigating the results of several models (32 models), which consider different sets of correlations, in comparison to the experimental data (performed by General Electric Oil & Gas), it is possible to observe the dependence, of the model correlations, on the operating conditions. The experimental results, performed using a 14 teeth-on-stator labyrinth seal, investigate several operating conditions of pressure drop.


Author(s):  
Naitik J. Mehta ◽  
Dara W. Childs

Measured results are presented to compare rotordynamic coefficients and leakage of a slanted-tooth labyrinth seal and a straight-tooth labyrinth seal. Both seals had identical pitch, depth, and number of teeth. The teeth inclination angle of the teeth on the slanted-tooth labyrinth was 65 deg from the normal axis. Experiments were carried out at an inlet pressure of 70 bar-a (1015 psi-a), pressure ratios of 0.4, 0.5, and 0.6, rotor speeds of 10.2, 15.35, and 20.2 krpm, and a radial clearance of 0.2 mm (8 mils). One zero and two positive inlet preswirl ratios were used. The results show only minute difference in the rotordynamic coefficients between the two seals. The slanted-tooth labyrinth seal consistently leaked approximately 10% less at all conditions. Predictions were made using a one control volume bulk-flow model (1CVM) which was developed for a straight-tooth labyrinth seal design. 1CVM under-predicted the rotordynamic coefficients and the leakage.


2002 ◽  
Vol 129 (1) ◽  
pp. 195-204
Author(s):  
Luis San Andrés ◽  
Thomas Soulas ◽  
Patrice Fayolle

This paper introduces a bulk-flow model for prediction of the static and dynamic force coefficients of angled injection Lomakin bearings. The analysis accounts for the flow interaction between the injection orifices, the supply circumferential groove, and the thin film lands. A one control-volume model in the groove is coupled to a bulk-flow model within the film lands of the bearing. Bernoulli-type relationships provide closure at the flow interfaces. Flow turbulence is accounted for with shear stress parameters and Moody’s friction factors. The flow equations are solved numerically using a robust computational method. Comparisons between predictions and experimental results for a tangential-against-rotation injection water Lomakin bearing show that novel model well predicts the leakage and direct stiffness and damping coefficients. Computed cross-coupled stiffness coefficients follow the experimental trends for increasing rotor speeds and supply pressures, but quantitative agreement remains poor. A parameter investigation shows evidence of the effects of the groove and land geometries on the Lomakin bearing flowrate and force coefficients. The orifice injection angle does not influence the bearing static performance, although it largely affects its stability characteristics through the evolution of the cross-coupled stiffnesses. The predictions confirm the promising stabilizing effect of the tangential-against-rotation injection configuration. Two design parameters, comprised of the feed orifices area and groove geometry, define the static and dynamic performance of Lomakin bearing. The analysis also shows that the film land clearance and length have a larger impact on the Lomakin bearing rotordynamic behavior than its groove depth and length.


2002 ◽  
Vol 129 (1) ◽  
pp. 185-194 ◽  
Author(s):  
Thomas Soulas ◽  
Luis San Andres

A computational analysis for prediction of the static and dynamic forced performance of gas honeycomb seals at off-centered rotor conditions follows. The bulk-flow analysis, similar to the two-control volume flow model of Kleynhans and Childs (1997, “The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals,” ASME J. Eng. Gas Turbines Power, 119, pp. 949–957), is brought without loss of generality into a single-control volume model, thus simplifying the computational process. The formulation accommodates the honeycomb effective cell depth, and existing software for annular pressure seals and is easily upgraded for damper seal analysis. An analytical perturbation method for derivation of zeroth- and first-order flow fields renders the seal equilibrium response and frequency-dependent dynamic force impedances, respectively. Numerical predictions for a centered straight-bore honeycomb gas seal shows good agreement with experimentally identified impedances, hence validating the model and confirming the paramount influence of excitation frequency on the rotordynamic force coefficients of honeycomb seals. The effect of rotor eccentricity on the static and dynamic forced response of a smooth annular seal and a honeycomb seal is evaluated for characteristic pressure differentials and rotor speeds. Leakage for the two seal types increases slightly as the rotor eccentricity increases. Rotor off-centering has a pronounced nonlinear effect on the predicted (and experimentally verified) dynamic force coefficients for smooth seals. However, in honeycomb gas seals, even large rotor center excursions do not sensibly affect the effective local film thickness, maintaining the flow azimuthal symmetry. The current model and predictions thus increase confidence in honeycomb seal design, operating performance, and reliability in actual applications.


Author(s):  
Thomas Soulas ◽  
Luis San Andres

A computational analysis for prediction of the static and dynamic forced performance of gas honeycomb seals at off-centered rotor conditions follows. The bulk-flow analysis, similar to the two-control volume flow model of Kleynhans and Childs [1], is brought without loss of generality into a single-control volume model, thus simplifying the computational process. The formulation accommodates the honeycomb effective cell depth, and existing software for annular pressure seals is easily upgraded for damper seal analysis. An analytical perturbation method for derivation of zeroth- and first-order flow fields renders the seal equilibrium response and frequency-dependent dynamic force impedances, respectively. Numerical predictions for a centered straight-bore honeycomb gas seal show good agreement with experimentally identified impedances, hence validating the model and confirming the paramount influence of excitation frequency on the rotordynamic force coefficients of honeycomb seals. The effect of rotor eccentricity on the static and dynamic forced response of a smooth annular seal and a honeycomb seal is evaluated for characteristic pressure differentials and rotor speeds. Leakage for the two seal types increases slightly as the rotor eccentricity increases. Rotor off-centering does have a pronounced non-linear effect on the predicted (and experimentally verified) dynamic force coefficients for smooth seals. However, in honeycomb gas seals, even large rotor center excursions do not sensibly affect the effective local film thickness, maintaining the flow azimuthal symmetry. The current model and predictions thus increase confidence in honeycomb seal design, operating performance and reliability in actual applications.


Author(s):  
Naitik J. Mehta ◽  
Dara W. Childs

Measured results are presented to compare rotordynamic coefficients and leakage of a slanted-tooth labyrinth seal and a straight-tooth labyrinth seal. Both seals had identical pitch, depth, and number of teeth. The teeth inclination angle of the teeth on the slanted-tooth labyrinth was 65° from the normal axis. Experiments were carried out at an inlet pressure of 70 bar-a (1015 psi-a), pressure ratios of 0.4, 0.5, and 0.6, rotor speeds of 10.2, 15.35, and 20.2 krpm, and a radial clearance of 0.2 mm (8 mils). One zero and two positive inlet preswirl ratios were used. The results show only minute difference in the rotordynamic coefficients between the two seals. The slanted-tooth labyrinth seal consistently leaked approximately 10% less at all conditions. Predictions were made using a one control volume bulk-flow model (1CVM) which was developed for a straight-tooth labyrinth seal design. 1CVM under-predicted the rotordynamic coefficients and the leakage.


Sign in / Sign up

Export Citation Format

Share Document