An Experimental Investigation of Convective Heat Transfer From Wire-On-Tube Heat Exchangers

1997 ◽  
Vol 119 (2) ◽  
pp. 348-356 ◽  
Author(s):  
J. L. Hoke ◽  
A. M. Clausing ◽  
T. D. Swofford

An experimental investigation of the air-side convective heat transfer from wire-on-tube heat exchangers is described. The study is motivated by the desire to predict the performance, in a forced flow, of the steel wire-on-tube condensers used in most refrigerators. Previous investigations of wire-on-tube heat exchangers in a forced flow have not been reported in the literature. The many geometrical parameters (wire diameter, tube diameter, wire pitch, tube pitch, etc.), the complex conductive paths in the heat exchanger, and the importance of buoyant forces in a portion of the velocity regime of interest make the study a formidable one. A key to the successful correlation of the experimental results is a definition of the convective heat transfer coefficient, hw, that accounts for the temperature gradients in the wires as well as the vast difference in the two key characteristic lengths—the tube and wire diameters. Although this definition results in the need to solve a transcendental equation in order to obtain hw from the experimental data, the use of the resulting empirical correlation is straightforward. The complex influence of the mixed convection regime on the heat transfer from wire-on-tube heat exchangers is shown, as well as the effects of air velocity and the angle of attack. The study covers a velocity range of 0 to 2 m/s (the Reynolds number based on wire diameter extends to 200) and angles of attack varying from 0 deg (horizontal coils) to ±90 deg. Heat transfer data from seven different wire-on-tube heat exchangers are correlated so that 95 percent of the data below a Richardson number of 0.004, based on the wire diameter, lie within ±16.7 percent of the proposed correlation.

2016 ◽  
Vol 10 (8) ◽  
pp. 12
Author(s):  
Hussein J. Akeiber ◽  
Mazlan A. Wahid ◽  
Hasanen M. Hussen ◽  
Abdulrahman Th. Mohammad ◽  
Bashar Mudhaffar Abdullah ◽  
...  

Accurate and efficient modeling of convective heat transfer coefficient (CHTC) by considering the detailed room geometry and heat flux density in building is demanding for economy, environmental amiability, and user satisfaction. We report the three-dimensional finite-volume numerical simulation of internal room flow field characteristics with heated walls. Two different room geometries are chosen to determine the CHTC and temperature distribution. The conservation equations (elliptic partial differential) for the incompressible fluid flows are numerically solved using iterative method with no-slip boundary conditions to compute velocity components, pressure, temperature, turbulent kinetic energy, and dissipation rate. A line-by-line solution technique combined with a tri-diagonal matrix algorithm (TDMA) is used. The temperature field is simulated for various combinations of air-change per hour and geometrical parameters. The values of HTCs are found to enhance with increasing wall temperatures.


Author(s):  
Pablo Coronel ◽  
K.P. Sandeep

This study involved the determination of convective heat transfer coefficient in both helical and straight tubular heat exchangers under turbulent flow conditions. The experiments were conducted in helical heat exchangers, with coils of two different curvature ratios (d/D = 0.114 and 0.078), and in straight tubular heat exchangers at various flow rates (1.89 x 10-4 - 6.31 x 10-4 m3/s) and for different end-point temperatures (92 - 149 °C). The results show that the overall heat transfer coefficient (U) in the helical heat exchanger is much higher than that in straight tubular heat exchangers. In addition, U was found to be larger in the coil of larger curvature ratio (d/D = 0.114) than in the coil of smaller curvature ratio (d/D = 0.078). The inside (hi) and outside (ho) convective heat transfer coefficients were determined based on the overall heat transfer coefficient and a correlation to compute the inside convective heat transfer coefficient (hi) as a function of NRe, NPr, and d/D was developed.


2021 ◽  
Vol 239 ◽  
pp. 00022
Author(s):  
Muhammad Shoaib Rafiq ◽  
Hafiz Muhammad Ali ◽  
Amir Sultan

Coolant plays important characteristic in automobile industry to prevent failure and damage by balancing the temperature. Due to this approach, coolants are being used as new thermal fluid to study the heat transfer coefficient performance. This study consists of an experimental investigation of internal convective heat transfer of 50:50 Water-Ethylene Glycol based Nano-fluid through a copper tube of 18mm external diameter and 16.5mm internal diameter and a test section of 1m in a fully turbulent regime. Total convective heat transfer coefficient of Nano fluid at three different volumetric concentrations of nanoparticles is estimated. Local convective heat transfer at eight different points along the tube at varying Reynolds number is also determined. At 0.15% volumetric concentration of SiO2 Nanoparticles (NPS) 29% increment in convective heat transfer coefficient (CHT) is observed. The decrease in the heat transfer rate is observed with changing distance axially. Particles disorganized movement of NPs and undulation in the fluid and increased in thermal conductivity of Nano fluid can be possible reason for extra ordinary change in heat transfer.


Sign in / Sign up

Export Citation Format

Share Document