Prediction of Turbulent Boundary Layer Development in Conical Diffusers

1966 ◽  
Vol 8 (4) ◽  
pp. 426-436 ◽  
Author(s):  
A. D. Carmichael ◽  
G. N. Pustintsev

Methods of predicting the growth of turbulent boundary layers in conical diffusers using the kinetic-energy deficit equation were developed. Three different forms of auxiliary equations were used. Comparison between the measured and predicted results showed that there was fair agreement although there was a tendency to underestimate the predicted momentum thickness and over-estimate the predicted shape factor.

1983 ◽  
Vol 34 (2) ◽  
pp. 147-161 ◽  
Author(s):  
M.M.M. El Telbany ◽  
J. Niknejad ◽  
A.J. Reynolds

SummaryConsideration is given to the relationship H1 = f(H) linking the common shape factor H and the mass-flow shape parameter H1 which is used in entrainment models of boundary-layer development. A formula suggested by Green et al is found to be most nearly consistent with the measurements presented. However, a more exact prediction of H1 is obtained by introducing a factor involving the Reynolds number based on the local momentum thickness θ; thus H1 = f(H, Reθ). Predictions obtained by incorporating the appropriately modified entrainment equation into the well-known method of Green et al prove not to give an improved representation of the development of boundary layers studied experimentally by the authors and others. It is concluded that the modified formula for H1 is primarily useful in giving an improved specification of the overall boundary layer thickness δ = θ(H1 + H), and hence of other features of the developing profile.


1958 ◽  
Vol 62 (567) ◽  
pp. 215-219
Author(s):  
T. J. Black

A New type of auxiliary equation is given for calculating the development of the form-parameter H in turbulent boundary layers with adverse pressure gradients. The chief advantage of this new method lies in the rapidity and ease of calculation which has been achieved, without apparent sacrifice of accuracy.Whereas the growth of momentum thickness in the turbulent boundary layer can now be rapidly calculated by methods involving only simple quadrature, the prediction of the form parameter development remains a laborious task, while the results obtained do not always appear to justify the complexity of the calculations.


1979 ◽  
Vol 101 (1) ◽  
pp. 23-29 ◽  
Author(s):  
H. Koyama ◽  
S. Masuda ◽  
I. Ariga ◽  
I. Watanabe

To investigate the effects of Coriolis force on two-dimensional laminar and turbulent boundary layers, quantitative experiments were performed. A numerical evaluation was also carried out utilizing the Monin-Oboukhov coefficient including the effect of rotation. From the experimental results, the boundary layer development was found to be promoted on the unstable side and suppressed on the stable side, in comparison with the case of zero-rotation. In the stable boundary layer, the critical Reynolds number for relaminarization was observed to increase as rotation number was decreased. Calculated results were seen to predict the stabilizing effect of Coriolis force fairly well.


Author(s):  
Y. Dong ◽  
N. A. Cumpsty

This paper follows directly from Part I** by the same authors and describes measurements of the boundary layer on a supercritical-type compressor blade with wakes from a simulated moving upstream blade row convected through the passage. (The blades and the test facilities togehter with the background are described in Part I.) The results obtained with the wakes are compared to those with none for both low and high levels of inlet turbulence. The transition process and boundary layer development is very different in each case though the overall momentum thickness at the trailing edge is fairly similar. None of the models for transition is satisfactory when this is initiated by moving wakes.


Author(s):  
J. C. Gibbings ◽  
S. M. Al-Shukri

This paper reports experimental measurements of two-dimensional turbulent boundary layers over sandpaper surfaces under turbulent streams to complement the Nikuradse experiments on pipe flow. The study included the recovery region downstream of the end of transition. Correlations are given for the thickness, the shape factor, the skin friction and the parameters of the velocity profile of the layer. Six further basic differences from the pipe flow are described to add to the five previously reported.


1990 ◽  
Vol 112 (2) ◽  
pp. 231-240 ◽  
Author(s):  
Y. Dong ◽  
N. A. Cumpsty

This paper follows directly from Part 1 by the same authors and describes measurements of the boundary layer on a supercritical-type compressor blade with wakes from a simulated moving upstream blade row convected through the passage. (The blades and the test facilities together with the background are described in Part 1). The results obtained with the wakes are compared to those with none for both low and high levels of inlet turbulence. The transition process and boundary layer development are very different in each case, though the overall momentum thickness at the trailing edge is fairly similar. None of the models for transition is satisfactory when this is initiated by moving wakes.


1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.


2021 ◽  
Author(s):  
Michael Hopfinger ◽  
Volker Gümmer

Abstract The development of viscous endwall flow is of major importance when considering highly-loaded compressor stages. Essentially, all losses occurring in a subsonic compressor are caused by viscous shear stresses building up boundary layers on individual aerofoils and endwall surfaces. These boundary layers cause significant aerodynamic blockage and cause a reduction in effective flow area, depending on the specifics of the stage design. The presented work describes the numerical investigation of blockage development in a 3.5-stage low-speed compressor with tandem stator vanes. The research is aimed at understanding the mechanism of blockage generation and growth in tandem vane rows and across the entire compressor. Therefore, the blockage generation is investigated as a function of the operating point, the rotational speed and the inlet boundary layer thickness.


2016 ◽  
Vol 804 ◽  
pp. 513-530 ◽  
Author(s):  
R. Jason Hearst ◽  
Guillaume Gomit ◽  
Bharathram Ganapathisubramani

The influence of turbulence on the flow around a wall-mounted cube immersed in a turbulent boundary layer is investigated experimentally with particle image velocimetry and hot-wire anemometry. Free-stream turbulence is used to generate turbulent boundary layer profiles where the normalised shear at the cube height is fixed, but the turbulence intensity at the cube height is adjustable. The free-stream turbulence is generated with an active grid and the turbulent boundary layer is formed on an artificial floor in a wind tunnel. The boundary layer development Reynolds number ($Re_{x}$) and the ratio of the cube height ($h$) to the boundary layer thickness ($\unicode[STIX]{x1D6FF}$) are held constant at $Re_{x}=1.8\times 10^{6}$ and $h/\unicode[STIX]{x1D6FF}=0.47$. It is demonstrated that the stagnation point on the upstream side of the cube and the reattachment length in the wake of the cube are independent of the incoming profile for the conditions investigated here. In contrast, the wake length monotonically decreases for increasing turbulence intensity but fixed normalised shear – both quantities measured at the cube height. The wake shortening is a result of heightened turbulence levels promoting wake recovery from high local velocities and the reduction in strength of a dominant shedding frequency.


1969 ◽  
Vol 73 (698) ◽  
pp. 143-147 ◽  
Author(s):  
M. K. Bull

Although a numerical solution of the turbulent boundary-layer equations has been achieved by Mellor and Gibson for equilibrium layers, there are many occasions on which it is desirable to have closed-form expressions representing the velocity profile. Probably the best known and most widely used representation of both equilibrium and non-equilibrium layers is that of Coles. However, when velocity profiles are examined in detail it becomes apparent that considerable care is necessary in applying Coles's formulation, and it seems to be worthwhile to draw attention to some of the errors and inconsistencies which may arise if care is not exercised. This will be done mainly by the consideration of experimental data. In the work on constant pressure layers, emphasis tends to fall heavily on the author's own data previously reported in ref. 1, because the details of the measurements are readily available; other experimental work is introduced where the required values can be obtained easily from the published papers.


Sign in / Sign up

Export Citation Format

Share Document